在 C++ 中查找方阵对角线上的最小和最大元素
在这个问题中,我们给定一个大小为 nXn 的方阵。我们的任务是查找方阵对角线上的最小和最大元素。我们需要找到矩阵的主对角线和副对角线的最小和最大元素。
让我们举个例子来理解这个问题,
输入
mat[][] = { {3, 4, 7}, {5, 2, 1}, {1, 8, 6} }
输出
Smallest element in Primary Diagonal = 2 Largest element in Primary Diagonal = 6 Smallest element in Secondary Diagonal = 1 Largest element in Secondary Diagonal = 7
Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.
解决方案方法
解决这个问题的一个简单方法是使用嵌套循环。为了检查主对角线上的元素,我们将考虑 **i = j**。对于副对角线,我们将考虑 **i + j = n -1**。我们将找到主对角线和副对角线矩阵的最大和最小元素。
程序说明我们解决方案的工作原理,
示例
#include<iostream> using namespace std; void findMaxAndMinOfDiagonals(int mat[3][3], int n){ if (n == 0) return; int pDiagMin = mat[0][0], pDiagMax = mat[0][0]; int sDiagMin = mat[0][n - 1 ], sDiagMax = mat[0][n - 1]; for (int i = 1; i < n; i++) { for (int j = 1; j < n; j++) { if (i == j){ if (mat[i][j] < pDiagMin) pDiagMin = mat[i][j]; if (mat[i][j] > pDiagMax) pDiagMax = mat[i][j]; } if ((i + j) == (n - 1)) { if (mat[i][j] < sDiagMin){ sDiagMin = mat[i][j]; } if (mat[i][j] > sDiagMax) sDiagMax = mat[i][j]; } } } cout<<("\nSmallest Element of Principal Diagonal : ")<<pDiagMin; cout<<("\nGreatest Element of Principal Diagonal : ")<<pDiagMax; cout<<("\nSmallest Element of Secondary Diagonal : ")<<sDiagMin; cout<<("\nGreatest Element of Secondary Diagonal : ")<<sDiagMax; } int main(){ int mat[3][3] = { { 3, 4, 7 }, { 0, 2, 1 }, { 1, 7, 8 } }; int n = sizeof(mat) / sizeof(mat[0]); findMaxAndMinOfDiagonals(mat, n); }
输出
Smallest Element of Principal Diagonal : 2 Greatest Element of Principal Diagonal : 8 Smallest Element of Secondary Diagonal : 2 Greatest Element of Secondary Diagonal : 7
另一种更有效的解决方案是将嵌套循环减少为单个循环,利用主对角线矩阵的两个索引相同,即
primary diagonal elements = mat[i][j]. Similarly, for secondary diagonal elements = mat[i][n - i - 1]
程序说明我们解决方案的工作原理,
示例
#include<iostream> using namespace std; void findMaxAndMinOfDiagonals(int mat[3][3], int n){ if (n == 0) return; int pDiagMin = mat[0][0], pDiagMax = mat[0][0]; int sDiagMin = mat[0][n - 1 ], sDiagMax = mat[0][n - 1]; for (int i = 1; i < n; i++) { if (mat[i][i] < pDiagMin) pDiagMin = mat[i][i]; if (mat[i][i] > pDiagMax) pDiagMax = mat[i][i]; if (mat[i][n - 1 - i] < sDiagMin) sDiagMin = mat[i][n - 1 - i]; if (mat[i][n - 1 - i] > sDiagMax) sDiagMax = mat[i][n - 1 - i]; } cout<<("\nSmallest Element of Principal Diagonal : ")<<pDiagMin; cout<<("\nGreatest Element of Principal Diagonal : ")<<pDiagMax; cout<<("\nSmallest Element of Secondary Diagonal : ")<<sDiagMin; cout<<("\nGreatest Element of Secondary Diagonal : ")<<sDiagMax; } int main(){ int mat[3][3] = { { 3, 4, 7 }, { 0, 2, 1 }, { 1, 7, 8 } }; int n = sizeof(mat) / sizeof(mat[0]); findMaxAndMinOfDiagonals(mat, n); }
输出
Smallest Element of Principal Diagonal : 2 Greatest Element of Principal Diagonal : 8 Smallest Element of Secondary Diagonal : 1 Greatest Element of Secondary Diagonal : 7
广告