如何使用Tensorflow导出使用Python构建的模型?
Tensorflow 是 Google 提供的一个机器学习框架。它是一个开源框架,与 Python 结合使用以实现算法、深度学习应用程序等等。它用于研究和生产目的。
它具有优化技术,有助于快速执行复杂的数学运算。
这是因为它使用了 NumPy 和多维数组。这些多维数组也称为“张量”。该框架支持使用深度神经网络。它具有高度可扩展性,并附带许多流行的数据集。它使用 GPU 计算并自动管理资源。它附带大量机器学习库,并且得到良好的支持和记录。该框架能够运行深度神经网络模型、训练它们并创建预测相应数据集相关特征的应用程序。
可以使用以下代码行在 Windows 上安装“tensorflow”包:
pip install tensorflow
张量是 TensorFlow 中使用的数据结构。它有助于连接流图中的边。此流图称为“数据流图”。张量不过是一个多维数组或列表。
我们使用 Google Colaboratory 来运行以下代码。Google Colab 或 Colaboratory 帮助通过浏览器运行 Python 代码,无需任何配置,并可免费访问 GPU(图形处理单元)。Colaboratory 是建立在 Jupyter Notebook 之上的。
示例
以下是代码片段:
print("The model is being exported") export_model = tf.keras.Sequential( [binary_vectorize_layer, binary_model, layers.Activation('sigmoid')]) print("The model is being compiled") export_model.compile( loss=losses.SparseCategoricalCrossentropy(from_logits=False), optimizer='adam', metrics=['accuracy']) print("The model is being tested with `raw_test_ds`, which resuls in raw strings") loss, accuracy = export_model.evaluate(raw_test_ds) print("The accuracy of the model is : {:2.2%}".format(binary_accuracy))
代码来源 - https://tensorflowcn.cn/tutorials/load_data/text
输出
The model is being exported The model is being compiled The model is being tested with `raw_test_ds`, which resuls in raw strings 250/250 [==============================] - 4s 13ms/step - loss: 0.5296 - accuracy: 0.8078 The accuracy of the model is : 81.10%
解释
在将数据集馈送到模型之前,会将其应用于“TextVectorization”层。
如果模型需要处理原始字符串,则可以在模型内部应用“TextVectorization”层。
为此,将使用训练期间使用的权重创建一个新模型。
广告