如何将图像转换为 PyTorch 张量?


PyTorch 张量是一个包含单个数据类型元素的 n 维数组(矩阵)。张量类似于 NumPy 数组。NumPy 数组和 PyTorch 张量之间的区别在于,张量利用 GPU 加速数值计算。为了加速计算,图像被转换为张量。

要将图像转换为 PyTorch 张量,我们可以采取以下步骤:

步骤

  • 导入所需的库。所需的库是 **torch、torchvision、Pillow**。

  • 读取图像。图像必须是 PIL 图像或范围在 [0, 255] 内的 **numpy.ndarray (HxWxC)**。这里 **H、W** 和 **C** 分别是图像的高度、宽度和通道数。

  • 定义一个将图像转换为张量的变换。我们使用 **transforms.ToTensor()** 来定义变换。

  • 使用上面定义的变换将图像转换为张量。

输入图像

示例 1

# Import the required libraries
import torch
from PIL import Image
import torchvision.transforms as transforms

# Read the image
image = Image.open('Penguins.jpg')

# Define a transform to convert the image to tensor
transform = transforms.ToTensor()

# Convert the image to PyTorch tensor
tensor = transform(image)

# print the converted image tensor
print(tensor)

输出

tensor([[[0.4510, 0.4549, 0.4667, ..., 0.3333, 0.3333, 0.3333],
         [0.4549, 0.4510, 0.4627, ..., 0.3373, 0.3373, 0.3373],
         [0.4667, 0.4588, 0.4667, ..., 0.3451, 0.3451, 0.3412],
         ...,
         [0.6706, 0.5020, 0.5490, ..., 0.4627, 0.4275, 0.3333],
         [0.4196, 0.5922, 0.6784, ..., 0.4627, 0.4549, 0.3569],
         [0.3569, 0.3529, 0.4784, ..., 0.3922, 0.4314, 0.3490]],
         [[0.6824, 0.6863, 0.7020, ..., 0.6392, 0.6392, 0.6392],
         [0.6863, 0.6824, 0.6980, ..., 0.6314, 0.6314, 0.6314],
         [0.6980, 0.6902, 0.6980, ..., 0.6392, 0.6392, 0.6353],
         ...,
         [0.7255, 0.5412, 0.5765, ..., 0.5255, 0.5020, 0.4157],
         [0.4706, 0.6314, 0.7098, ..., 0.5255, 0.5294, 0.4392],
         [0.4196, 0.3961, 0.5020, ..., 0.4510, 0.5059, 0.4314]],
         [[0.8157, 0.8196, 0.8353, ..., 0.7922, 0.7922, 0.7922],
         [0.8196, 0.8157, 0.8314, ..., 0.7882, 0.7882, 0.7882],
         [0.8314, 0.8235, 0.8314, ..., 0.7961, 0.7961, 0.7922],
         ...,
         [0.6235, 0.5059, 0.6157, ..., 0.4863, 0.4941, 0.4196],
         [0.3922, 0.6000, 0.7176, ..., 0.4863, 0.5216, 0.4431],
         [0.3686, 0.3647, 0.4863, ..., 0.4235, 0.4980, 0.4353]]])

在上面的 Python 程序中,我们已将 PIL 图像转换为张量。

示例 2

我们也可以使用 **OpenCV** 读取图像。使用 OpenCV 读取的图像是 **numpy.ndarray** 类型。我们可以使用 **transforms.ToTensor()** 将 **numpy.ndarray** 转换为张量。请看下面的例子。

# Import the required libraries
import torch
import cv2
import torchvision.transforms as transforms

# Read the image
image = cv2.imread('Penguins.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# Define a transform to convert the image to tensor
transform = transforms.ToTensor()

# Convert the image to PyTorch tensor
tensor = transform(image)

# Print the converted image tensor
print(tensor)

输出

tensor([[[0.4510, 0.4549, 0.4667, ..., 0.3333, 0.3333, 0.3333],
         [0.4549, 0.4510, 0.4627, ..., 0.3373, 0.3373, 0.3373],
         [0.4667, 0.4588, 0.4667, ..., 0.3451, 0.3451, 0.3412],
         ...,
         [0.6706, 0.5020, 0.5490, ..., 0.4627, 0.4275, 0.3333],
         [0.4196, 0.5922, 0.6784, ..., 0.4627, 0.4549, 0.3569],
         [0.3569, 0.3529, 0.4784, ..., 0.3922, 0.4314, 0.3490]],
         [[0.6824, 0.6863, 0.7020, ..., 0.6392, 0.6392, 0.6392],
         [0.6863, 0.6824, 0.6980, ..., 0.6314, 0.6314, 0.6314],
         [0.6980, 0.6902, 0.6980, ..., 0.6392, 0.6392, 0.6353],
         ...,
         [0.7255, 0.5412, 0.5765, ..., 0.5255, 0.5020, 0.4157],
         [0.4706, 0.6314, 0.7098, ..., 0.5255, 0.5294, 0.4392],
         [0.4196, 0.3961, 0.5020, ..., 0.4510, 0.5059, 0.4314]],
         [[0.8157, 0.8196, 0.8353, ..., 0.7922, 0.7922, 0.7922],
         [0.8196, 0.8157, 0.8314, ..., 0.7882, 0.7882, 0.7882],
         [0.8314, 0.8235, 0.8314, ..., 0.7961, 0.7961, 0.7922],
         ...,
         [0.6235, 0.5059, 0.6157, ..., 0.4863, 0.4941, 0.4196],
         [0.3922, 0.6000, 0.7176, ..., 0.4863, 0.5216, 0.4431],
         [0.3686, 0.3647, 0.4863, ..., 0.4235, 0.4980, 0.4353]]])

更新于:2021年11月6日

15K+ 浏览量

启动你的 职业生涯

通过完成课程获得认证

开始
广告
© . All rights reserved.