如何查找 R 列表中存储的所有矩阵的每一行的最大值?


要查找 R 列表中存储的所有矩阵的每一行的最大值,我们可以按照以下步骤操作:

  • 首先,创建一个矩阵列表。
  • 然后,结合使用 `max` 函数、`lapply` 函数和 `apply` 函数来查找所有矩阵每一行的最大值。

创建矩阵列表

使用 `matrix` 函数创建多个矩阵,并使用 `list` 函数将它们存储在一个列表中:

 在线演示

M1<-matrix(rnorm(20),ncol=2)
M2<-matrix(rnorm(20),ncol=2)
M3<-matrix(rnorm(20),ncol=2)
M4<-matrix(rnorm(20),ncol=2)
M5<-matrix(rnorm(20),ncol=2)
List<-list(M1,M2,M3,M4,M5)
List

执行上述脚本后,将生成以下输出(由于随机化,此输出会在您的系统上有所不同):

[[1]]
         [,1]        [,2]
[1,]  0.01714936  1.3763921
[2,] -1.55809582 -0.7712093
[3,] -0.35186736  0.8351507
[4,] -0.48988731 -1.2714754
[5,] -0.97241718 0.8105862
[6,] -0.03231086 -0.1901989
[7,]  0.34748364 1.5562359
[8,]  1.10587259 -0.6592835
[9,]   0.38934787 1.0586670
[10,] -0.24586360 -2.2442172
[[2]]
          [,1]     [,2]
[1,] -0.6150390 -0.2355494
[2,] -0.1527035  0.8530879
[3,] -0.5910591 -0.0579156
[4,] -0.4871413 -0.9829705
[5,] 2.1435879   0.7445451
[6,] -0.8603206 -0.4894914
[7,] -0.6303660 -0.4026965
[8,] -1.0862919 0.3214481
[9,] 0.5157734 0.6113277
[10,] 1.4241205 -0.4793407
[[3]]
           [,1]    [,2]
[1,] -1.1166732 0.6219046
[2,] 1.2956490 -0.7224109
[3,] 0.4492815 1.0038605
[4,] 1.8768257 -1.4001428
[5,] 0.6893493 -0.3747519
[6,] 0.3261293 1.7425561
[7,] 1.0496563 0.4613786
[8,] -1.1868764 -0.7465893
[9,] 0.2235005 0.9713996
[10,] 0.6216177 -0.5418687
[[4]]
         [,1]       [,2]
[1,] 0.2266899 -2.05779477
[2,] -1.0528427 2.06139961
[3,] -0.5606942 -0.48373582
[4,] 0.2228694 -1.19236303
[5,] 0.7759945 -0.37885960
[6,] 0.4570521 0.13911064
[7,] 0.4439456 -0.08302548
[8,] -0.6691629 1.82642429
[9,] -0.4612115 0.74955822
[10,] 0.1766236 -1.75742835
[[5]]
         [,1]       [,2]
[1,] 0.01010036 -1.54334237
[2,] 2.05466828 -0.11349936
[3,] -0.42566069 0.14698151
[4,] -0.92737532 1.62506335
[5,] -1.09411380 -0.63808937
[6,] 1.55792587 1.48997553
[7,] 1.56339394 -1.16440367
[8,] 0.18405916 -1.17883290
[9,] 0.52923750 0.01279766
[10,] 0.57009101 0.07179523

查找所有矩阵每一行的最大值

使用 `max` 函数、`lapply` 函数和 `apply` 函数查找列表中存储的所有矩阵每一行的最大值:

 在线演示

M1<-matrix(rnorm(20),ncol=2)
M2<-matrix(rnorm(20),ncol=2)
M3<-matrix(rnorm(20),ncol=2)
M4<-matrix(rnorm(20),ncol=2)
M5<-matrix(rnorm(20),ncol=2)
List<-list(M1,M2,M3,M4,M5)
lapply(List,FUN=function(x)apply(x,MARGIN=1,FUN=max))

输出

[[1]]
[1] 1.37639206 -0.77120931 0.83515070 -0.48988731 0.81058622 -0.03231086
[7] 1.55623594 1.10587259 1.05866703 -0.24586360

[[2]]
[1] -0.2355494 0.8530879 -0.0579156 -0.4871413 2.1435879 -0.4894914
[7] -0.4026965 0.3214481 0.6113277 1.4241205

[[3]]
[1] 0.6219046 1.2956490 1.0038605 1.8768257 0.6893493 1.7425561
[7] 1.0496563 -0.7465893 0.9713996 0.6216177

[[4]]
[1] 0.2266899 2.0613996 -0.4837358 0.2228694 0.7759945 0.4570521
[7] 0.4439456 1.8264243 0.7495582 0.1766236

[[5]]
[1] 0.01010036 2.05466828 0.14698151 1.62506335 -0.63808937 1.55792587
[7] 1.56339394 0.18405916 0.52923750 0.57009101

更新于:2021年8月13日

84 次浏览

启动您的职业生涯

完成课程获得认证

开始学习
广告