如何在 R 中求表示科学记数法中非常小的数字的平均值?


如果我们找到科学数字的平均值,则结果也将采用科学记数法。我们可以通过使用 options(scipen=999) 来摆脱这个问题,一旦我们在 R 控制台中使用此代码,所有采用科学记数法的输入都将转换为正常的数字形式,包括任何计算,并且如果我们想要返回到科学记数法,可以使用 options(scipen=0)。

示例

实时演示

> x1<-c(4.225867e-23,3.463125e-24,2.480971e-35,1.660538e-26,1.074064e-37,6.829168e-29,4.305051e-21,2.702241e-27,1.692533e-29,1.058970e-29,6.622117e-34,4.139935e-36,2.587807e-37,1.617488e-38,1.010964e-39,6.318630e-21,3.949177e-22,2.468246e-23,1.542657e-24,9.641616e-26,6.026013e-27,3.766259e-28,2.353912e-29,1.471195e-30,9.194971e-32)
> mean(x1)

输出

[1] 4.436267e-22

示例

> options(scipen=999)
> mean(x1)

输出

[1] 0.0000000000000000000004436267

示例

实时演示

> x2<-sample(c(4.225867e-23,3.463125e-24,2.480971e-35,1.660538e-26,1.074064e-37,6.829168e-29,4.305051e-21,2.702241e-27,1.692533e-29,1.058970e-29,6.622117e-34,4.139935e-36,2.587807e-37,1.617488e-38,1.010964e-39,6.318630e-21,3.949177e-22,2.468246e-23,1.542657e-24,9.641616e-26,6.026013e-27,3.766259e-28,2.353912e-29,1.471195e-30,9.194971e-32),50,replace=TRUE)
> x2

输出

[1] 0.000000000000000000000000000000000000001010964
[2] 0.000000000000000000000000000068291679999999998
[3] 0.000000000000000000000000006026013000000000181
[4] 0.000000000000000000000000002702241000000000107
[5] 0.000000000000000000000042258669999999998179163
[6] 0.000000000000000000000000000000091949710000000
[7] 0.000000000000000000000000000000000000107406400
[8] 0.000000000000000000000000000000091949710000000
[9] 0.000000000000000000000003463124999999999951636
[10] 0.000000000000000000004305051000000000103323794
[11] 0.000000000000000000000001542657000000000059366
[12] 0.000000000000000000000000002702241000000000107
[13] 0.000000000000000000000000000001471195000000000
[14] 0.000000000000000000000000006026013000000000181
[15] 0.000000000000000000000000000000000000001010964
[16] 0.000000000000000000000000000000000000107406400
[17] 0.000000000000000000000001542657000000000059366
[18] 0.000000000000000000000000096416159999999999745
[19] 0.000000000000000000000000096416159999999999745
[20] 0.000000000000000000000000000000091949710000000
[21] 0.000000000000000000000000000001471195000000000
[22] 0.000000000000000000000000016605380000000000407
[23] 0.000000000000000000000000000023539120000000001
[24] 0.000000000000000000006318630000000000014343665
[25] 0.000000000000000000000000000000000000016174880
[26] 0.000000000000000000000003463124999999999951636
[27] 0.000000000000000000000000000000000000016174880
[28] 0.000000000000000000000000000068291679999999998
[29] 0.000000000000000000004305051000000000103323794
[30] 0.000000000000000000000042258669999999998179163
[31] 0.000000000000000000000000000000000662211700000
[32] 0.000000000000000000000024682460000000000627761
[33] 0.000000000000000000000024682460000000000627761
[34] 0.000000000000000000000000000068291679999999998
[35] 0.000000000000000000000394917700000000012347870
[36] 0.000000000000000000000000000000000024809710000
[37] 0.000000000000000000000000000068291679999999998
[38] 0.000000000000000000000000000000000000001010964
[39] 0.000000000000000000000042258669999999998179163
[40] 0.000000000000000000000000000023539120000000001
[41] 0.000000000000000000000024682460000000000627761
[42] 0.000000000000000000006318630000000000014343665
[43] 0.000000000000000000000000000000000000016174880
[44] 0.000000000000000000000000000010589700000000000
[45] 0.000000000000000000000000000000091949710000000
[46] 0.000000000000000000004305051000000000103323794
[47] 0.000000000000000000000000000000000024809710000
[48] 0.000000000000000000000000000010589700000000000
[49] 0.000000000000000000000001542657000000000059366
[50] 0.000000000000000000000000006026013000000000181

示例

> mean(x2)

输出

[1] 0.0000000000000000000005231988

示例

实时演示

> x3<-sample(c(4.225867e-23,3.463125e-24,2.480971e-35,1.660538e-26,1.074064e-37,6.829168e-29,4.305051e-21),50,replace=TRUE)
> x3

输出


[1] 0.0000000000000000000043050510000000001033238
[2] 0.0000000000000000000043050510000000001033238
[3] 0.0000000000000000000000034631249999999999516
[4] 0.0000000000000000000043050510000000001033238
[5] 0.0000000000000000000000000000682916800000000
[6] 0.0000000000000000000043050510000000001033238
[7] 0.0000000000000000000000034631249999999999516
[8] 0.0000000000000000000000034631249999999999516
[9] 0.0000000000000000000000034631249999999999516
[10] 0.0000000000000000000043050510000000001033238
[11] 0.0000000000000000000000422586699999999981792
[12] 0.0000000000000000000043050510000000001033238
[13] 0.0000000000000000000000422586699999999981792
[14] 0.0000000000000000000000000000000000001074064
[15] 0.0000000000000000000000000000000000001074064
[16] 0.0000000000000000000043050510000000001033238
[17] 0.0000000000000000000043050510000000001033238
[18] 0.0000000000000000000043050510000000001033238
[19] 0.0000000000000000000000000000000000248097100
[20] 0.0000000000000000000000000000682916800000000
[21] 0.0000000000000000000000000000682916800000000
[22] 0.0000000000000000000000000166053800000000004
[23] 0.0000000000000000000000034631249999999999516
[24] 0.0000000000000000000000000000000000001074064
[25] 0.0000000000000000000000000000682916800000000
[26] 0.0000000000000000000000000166053800000000004
[27] 0.0000000000000000000000000000000000001074064
[28] 0.0000000000000000000000000000000000001074064
[29] 0.0000000000000000000000000000000000248097100
[30] 0.0000000000000000000000000000000000248097100
[31] 0.0000000000000000000000000000000000001074064
[32] 0.0000000000000000000000000000682916800000000
[33] 0.0000000000000000000000034631249999999999516
[34] 0.0000000000000000000000000166053800000000004
[35] 0.0000000000000000000043050510000000001033238
[36] 0.0000000000000000000000000000000000001074064
[37] 0.0000000000000000000000000000000000001074064
[38] 0.0000000000000000000000000166053800000000004
[39] 0.0000000000000000000000034631249999999999516
[40] 0.0000000000000000000000000000682916800000000
[41] 0.0000000000000000000000000000000000248097100
[42] 0.0000000000000000000000000000000000248097100
[43] 0.0000000000000000000000034631249999999999516
[44] 0.0000000000000000000000000000000000001074064
[45] 0.0000000000000000000000000000682916800000000
[46] 0.0000000000000000000000000000000000001074064
[47] 0.0000000000000000000000000000000000001074064
[48] 0.0000000000000000000000000000000000001074064
[49] 0.0000000000000000000000000166053800000000004
[50] 0.0000000000000000000000000166053800000000004

示例

> mean(x3)

输出

[1] 0.0000000000000000000008632566

更新日期:2020-11-23

118 次浏览

开启您的 职业生涯

完成课程获得认证

开始
广告