如何在 R 中对数据框架列使用 pnorm 函数?


pnorm 函数用于找出正态分布随机变量的概率。这些概率包括小于平均值、大于平均值或平均值的左右两侧之间的概率。如果我们要对数据框架列使用 pnorm 函数,那么 apply 函数可以帮助我们。

考虑以下数据框架 −

示例

 实时演示

x1<-rnorm(20,5,0.35)
x2<-rnorm(20,5,0.67)
x3<-rnorm(20,5,0.04)
df1<-data.frame(x1,x2,x3)
df1

输出

       x1    x2         x3
1  4.556392  5.973934   5.018973
2  5.217397  4.932053   4.975870
3  5.426464  4.932799   4.962231
4  4.930645  5.297919   5.017925
5  4.773804  4.768619   4.943131
6  4.963782  4.569909   4.950701
7  4.925481  5.329717   4.985630
8  4.940240  5.871122   5.007031
9  4.904643  5.270739   5.022102
10 4.652542  5.784937   5.005462
11 5.089297  4.479673   4.961000
12 5.619575  4.181733   4.983067
13 4.696906  4.451156   4.931908
14 5.177524  4.422826   5.052467
15 5.186783  5.184310   5.015104
16 4.497172  5.241887   4.996715
17 4.689212  5.252937   5.035001
18 5.385772  4.095684   5.035014
19 5.455497  5.142272   5.021073
20 5.417301  5.025720   5.005374

在 df1 中的列上应用 pnorm −

示例

apply(df1,2,function(x) pnorm(x,mean=mean(x),sd=sd(x)))

输出

       x1          x2           x3
[1,]  0.07616627  0.96450889   0.75138999
[2,]  0.72115750  0.44156102   0.27056837
[3,]  0.88960525  0.44211276   0.15403922
[4,]  0.38629544  0.70493965   0.74135388
[5,]  0.22132609  0.32516348   0.05581552
[6,]  0.42550072  0.20448316   0.08623025
[7,]  0.38027932  0.72516490   0.37486428
[8,]  0.39754810  0.94661794   0.62607863
[9,]  0.35630529  0.68712704   0.78009609
[10,] 0.12759048  0.92666438   0.60816173
[11,] 0.57741133  0.15991056   0.14545675
[12,] 0.96515143  0.06018775   0.34616630
[13,] 0.15806523  0.14725726   0.02700442
[14,] 0.67888286  0.13536904   0.95364621
[15,] 0.68893707  0.62769115   0.71330952
[16,] 0.05346986  0.66772918   0.50508628
[17,] 0.15246286  0.67521495   0.87668128
[18,] 0.86438253  0.04322155   0.87676402
[19,] 0.90541682  0.59753060   0.77087289
[20,] 0.88424194  0.51137989   0.60714737

示例

 实时演示

y1<-rpois(20,5)
y2<-rpois(20,2)
y3<-rpois(20,2)
y4<-rpois(20,5)
y5<-rpois(20,10)
df2<-data.frame(y1,y2,y3,y4,y5)
df2

输出

   y1 y2 y3 y4 y5
1  7  4  3  3  10
2  7  2  2  5  6
3  2  1  4  4  11
4  5  1  2  6  13
5  6  2  3  9  10
6  7  4  4  4  7
7  5  3  2  7  15
8  2  1  1  3  15
9  3  1  2  4  9
10 4  3  1  4  15
11 1  4  4  4  13
12 5  6  4  8  9
13 3  0  5  2  14
14 7  2  1  8  7
15 6  3  4  5  10
16 3  2  2  6  19
17 4  1  5  5  11
18 7  2  1  5  11
19 6  1  2  9  9
20 3  3  4  3  9

在 df2 中的列上应用 pnorm −

示例

apply(df2,2,function(x) pnorm(x,mean=mean(x),sd=sd(x)))

输出

           y1        y2         y3           y4         y5
[1,]  0.88543697  0.87874297  0.55840970  0.14362005  0.36298572
[2,]  0.88543697  0.41829947  0.27834877  0.46146443  0.05825608
[3,]  0.08752759  0.18573275  0.81101173  0.28079874  0.48176830
[4,]  0.57107536  0.18573275  0.27834877  0.65061458  0.71356535
[5,]  0.75517414  0.41829947  0.55840970  0.96698029  0.36298572
[6,]  0.88543697  0.87874297  0.81101173  0.28079874  0.10296979
[7,]  0.57107536  0.68482707  0.27834877  0.80804251  0.87967779
[8,]  0.08752759   0.18573275 0.09300983  0.14362005  0.87967779
[9,]  0.19922632  0.18573275  0.27834877  0.28079874  0.25614928
[10,] 0.36970390  0.68482707  0.09300983  0.28079874  0.87967779
[11,] 0.03088880  0.87874297  0.81101173  0.28079874  0.71356535
[12,] 0.57107536  0.99451570  0.81101173  0.91220051  0.25614928
[13,] 0.19922632  0.05691416  0.94698775  0.06082067  0.80746817
[14,] 0.88543697  0.41829947  0.09300983  0.91220051  0.10296979
[15,] 0.75517414  0.68482707  0.81101173  0.46146443  0.36298572
[16,] 0.19922632  0.41829947  0.27834877  0.65061458  0.99163233
[17,] 0.36970390  0.18573275  0.94698775  0.46146443  0.48176830
[18,] 0.88543697  0.41829947  0.09300983  0.46146443  0.48176830
[19,] 0.75517414  0.18573275  0.27834877  0.96698029  0.25614928
[20,] 0.19922632  0.68482707  0.81101173  0.14362005  0.25614928

更新于:2021 年 2 月 10 日

609 次浏览

开启你的 事业

完成课程获得认证

开始
广告
© . All rights reserved.