最长递增子序列
最长递增子序列是其每一项都大于前一项的子序列。我们将在本文中尝试在给定的整数集中,找出最长递增子序列的长度。
输入和输出
Input: A set of integers. {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15} Output: The length of longest increasing subsequence. Here it is 6. The subsequence is 0, 2, 6, 9, 13, 15.
算法
longestSubSeq(subarray, n)
输入 − 子数组及其大小。
输出 − 最长递增子序列的长度。
Begin define array length of size n initially set 0 to all entries of length for i := 1 to n-1, do for j := 0 to i-1, do if subarray[j] < subarray[i] and length[j] > length[i], then length[i] := length[j] done increase length[i] by 1 done lis := 0 for i := 0 to n-1, do lis := maximum of lis and length[i] done return lis End
示例
#include <iostream> using namespace std; int longestSubSeq(int subArr[], int n) { int length[n] = { 0 }; //set all length to 0 length[0] = 1; //subsequence ending with subArr[0] is 1 for (int i = 1; i < n; i++) { //ignore first character, second to all for (int j = 0; j < i; j++) { //subsequence ends with subArr[j] if (subArr[j] < subArr[i] && length[j] > length[i]) length[i] = length[j]; } length[i]++; //add arr[i] } int lis = 0; for (int i = 0; i<n; i++) // find longest increasing subsequence lis = max(lis, length[i]); return lis; } int main() { int arr[] = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}; int n = 16 cout << "Length of Longest Increasing Subsequence is: " << longestSubSeq(arr, n); return 0; }
输出
Length of Longest Increasing Subsequence is: 6
广告