最大化每个索引仅属于一个子序列的长度为 3 的回文子序列的数量
在本文中,我们将深入探讨一个与字符串操作和各种编程语言中的动态规划相关的有趣问题。我们今天讨论的问题是“最大化每个索引仅属于一个子序列的长度为 3 的回文子序列的数量”。
问题陈述
给定一个字符串,任务是找到最大数量的长度为 3 的回文子序列,使得字符串中的每个索引都是单个子序列的一部分。
长度为 3 的回文子序列是形式为“aba”的子序列,其中'a'和'b'是任意字符。
解决方案方法
为了解决这个问题,我们将计算字符串中每个字符的频率。然后,我们将选择出现频率最高的字符。我们将用这个字符尽可能多地形成长度为 3 的回文子序列。每个子序列将由选定的字符、任何其他字符以及再次出现的选定字符组成。
示例
以下是解决此问题的程序 -
#include <stdio.h> #include <string.h> #include <stdlib.h> // Include for malloc #define CHAR_MAX 256 // Maximum possible characters in the ASCII character set // Function to find the maximum count of 3-length palindromic subsequences in the input string int maxPalindromeSubsequences(char* str) { int* count = (int*)malloc(sizeof(int) * CHAR_MAX); // Dynamically allocate memory for the array // Initialize the count array to 0 for (int i = 0; i < CHAR_MAX; i++) { count[i] = 0; } // Count the occurrences of each character in the string for (int i = 0; i < strlen(str); i++) { count[str[i]]++; } int maxCount = 0; // Iterate through the count array to find the maximum count of 3-length palindromic subsequences for (int i = 0; i < CHAR_MAX; i++) { if (count[i] >= 2) { int subseqCount = count[i] / 2; if (subseqCount > maxCount) { maxCount = subseqCount; } } } free(count); // Free the dynamically allocated memory return maxCount; // Return the maximum count of 3-length palindromic subsequences } int main() { char str[] = "abcaaadcb"; int result = maxPalindromeSubsequences(str); printf("The maximum count of 3-length palindromic subsequences is: %d\n", result); return 0; }
输出
The maximum count of 3-length palindromic subsequences is: 2
#include <iostream> #include <string> #include <algorithm> using namespace std; int maxPalindromeSubsequences(string str) { const int CHAR_MAX = 256; int count[CHAR_MAX] = {0}; for (int i=0; i<str.size(); i++) { count[str[i]]++; } return *max_element(count, count + CHAR_MAX) / 2; } int main() { string str = "abcaaadcb"; int result = maxPalindromeSubsequences(str); cout << "The maximum count of 3-length palindromic subsequences is: " << result << endl; return 0; }
输出
The maximum count of 3-length palindromic subsequences is: 2
import java.util.Arrays; public class MaxPalindromeSubsequences { // Function to find the maximum count of 3-length palindromic subsequences in the input string public static int maxPalindromeSubsequences(String str) { final int CHAR_MAX = 256; // Maximum possible characters in the ASCII character set int[] count = new int[CHAR_MAX]; // Array to store the count of each character in the string // Count the occurrences of each character in the string for (int i = 0; i < str.length(); i++) { count[str.charAt(i)]++; } int maxCount = 0; // Iterate through the count array to find the maximum count of 3-length palindromic subsequences for (int i = 0; i < CHAR_MAX; i++) { if (count[i] >= 2) { maxCount = Math.max(maxCount, count[i] / 2); } } return maxCount; // Return the maximum count of 3-length palindromic subsequences } public static void main(String[] args) { String str = "abcaaadcb"; int result = maxPalindromeSubsequences(str); System.out.println("The maximum count of 3-length palindromic subsequences is: " + result); } }
输出
The maximum count of 3-length palindromic subsequences is: 2
def max_palindrome_subsequences(s): CHAR_MAX = 256 # Maximum possible characters in the ASCII character set count = [0] * CHAR_MAX # List to store the count of each character in the string # Count the occurrences of each character in the string for char in s: count[ord(char)] += 1 max_count = 0 # Iterate through the count list to find the maximum count of 3-length palindromic subsequences for freq in count: if freq >= 2: max_count = max(max_count, freq // 2) return max_count # Return the maximum count of 3-length palindromic subsequences if __name__ == "__main__": s = "abcaaadcb" result = max_palindrome_subsequences(s) print("The maximum count of 3-length palindromic subsequences is:", result)
输出
The maximum count of 3-length palindromic subsequences is: 2
带测试用例的解释
让我们考虑字符串“abcaaadcb”。
当此字符串传递给 maxPalindromeSubsequences 函数时,它首先计算字符串中每个字符的频率:{'a': 4, 'b': 2, 'c': 2, 'd': 1}。
然后它找到出现频率最高的字符,即频率为 4 的'a'。
为了最大化长度为 3 的回文子序列的数量,它使用字符'a'尽可能多地形成子序列。每个子序列都包含'a'、任何其他字符以及再次出现的'a'。
由于'a'出现了 4 次,因此它可以形成 2 个这样的子序列,“aba”和“aca”。
因此,函数返回 2。
结论
此问题展示了我们如何使用频率计数和选择策略来解决复杂的字符串操作问题。这是一个练习和提高你的 C++ 编码技能的绝佳问题。
广告