C语言程序中以矩阵对角线模式打印数字。


任务是打印nxn的对角线模式矩阵。

如果n为3,则以对角线模式打印矩阵为:

所以输出将类似于:

示例

Input: 3
Output:
   1 2 4
   3 5 7
   6 8 9
Input: 4
Output:
   1 2 4  7
   3 5 8 11
   6 9 12 14
   10 13 15 16

问题表明我们必须给出一个数字n,生成一个nxn的矩阵,然后我们必须以对角线模式遍历矩阵并将值存储在单独的矩阵中。

但这会增加代码的复杂性,所以我们将:

  • 创建一个大小为**N X N**的矩阵,用于存储打印前的模式。

  • 将元素存储在模式的上三角中。观察到,当您沿对角线向下移动时,行索引增加1,列索引减少1。

  • 完成上三角后,以与上三角类似的方式存储下三角的元素,即当您沿对角线向下移动时,行索引增加1,列索引减少1。

算法

int printdiagonal(int n)
START
STEP 1: DECLARE int mat[n][n], i, j, k, d=1, m
STEP 2: LOOP FOR i = 0 AND i < n AND i++
   ASSIGN j AS i AND k AS 0
   LOOP FOR j = I AND j >= 0 AND j--
      ASSIGN mat[k][j] AS d
      INCREMENT d AND k BY 1
   END LOOP
END LOOP
STEP 3: LOOP FOR k = 1 AND k < n AND k++
   ASSIGN i AND m EQUALS TO k
   LOOP FOR j = n-1 AND j >= m AND j--
      ASSIGN mat[i][j] AS d;
      INCREMENT d AND i WITH 1
   END FOR
END FOR
STEP 4: LOOP FOR i = 0 AND i < n AND i++
   LOOP FOR j = 0 AND j < n AND j++
      PRINT mat[i][j]
   END FOR
   PRINT NEWLINE
END FOR
STOP

示例

#include <stdio.h>
int printdiagonal(int n){
   int mat[n][n], i, j, k, d=1, m;
   for ( i = 0; i < n; i++){
      j = i;
      k = 0;
      for ( j = i; j >= 0; j--){
         mat[k][j] = d;
         d++;
         k++;
      }
   }
   for ( k = 1; k < n; k++){
      i = m = k;
      for ( j = n-1; j >= m; j--){
         mat[i][j] = d;
         d++;
         i++;
      }
   }
   for ( i = 0; i < n; i++){
      for(j = 0; j < n; j++){
         printf("%d ", mat[i][j] );
      }
      printf("
");    } } int main(int argc, char const *argv[]){    int n = 3;    printdiagonal(n);    return 0; }

输出

如果我们运行上面的程序,它将生成以下输出:

1 2 4
3 5 7
6 8 9

更新于:2019年8月22日

2K+ 次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告