Python – 使用 Numpy 获取两个 Pandas 数据帧共享的列
若要获取两个数据帧共享的列,请使用 intersect1d() 方法。此方法由 numpy 提供,因此您还需要使用 Pandas 导入 Numpy。我们首先导入所需的库 −
import pandas as pd import numpy as np
创建两个数据帧 −
# creating dataframe1
dataFrame1 = pd.DataFrame({"Car": ['Bentley', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Cubic_Capacity": [2000, 1800, 1500, 2500, 2200, 3000],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000],"Units_Sold": [ 100, 110, 150, 80, 200, 90]
})
# creating dataframe2
dataFrame2 = pd.DataFrame({"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Units_Sold": [ 100, 110, 150, 80, 200, 90]
})使用 numpy 方法 intersect1d() 获取公共列 −
res = np.intersect1d(dataFrame2.columns, dataFrame1.columns)
示例
以下是代码 −
import pandas as pd
import numpy as np
# creating dataframe1
dataFrame1 = pd.DataFrame({"Car": ['Bentley', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Cubic_Capacity": [2000, 1800, 1500, 2500, 2200, 3000],"Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000],"Units_Sold": [ 100, 110, 150, 80, 200, 90]
})
print"Dataframe1...\n",dataFrame1
# creating dataframe2
dataFrame2 = pd.DataFrame({"Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'],"Units_Sold": [ 100, 110, 150, 80, 200, 90]
})
print"Dataframe2...\n",dataFrame2
# get common columns using intersect1d()
res = np.intersect1d(dataFrame2.columns, dataFrame1.columns)
print"\nCommon columns...\n",res输出
这将产生以下输出 −
Dataframe1... Car Cubic_Capacity Reg_Price Units_Sold 0 Bentley 2000 7000 100 1 Lexus 1800 1500 110 2 Tesla 1500 5000 150 3 Mustang 2500 8000 80 4 Mercedes 2200 9000 200 5 Jaguar 3000 6000 90 Dataframe2... Car Units_Sold 0 BMW 100 1 Lexus 110 2 Tesla 150 3 Mustang 80 4 Mercedes 200 5 Jaguar 90 Common columns... ['Car' 'Units_Sold']
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP