Python Pandas - 从索引对象返回相对频率
如需从 Index 对象返回相对频率,请将 index.value_counts() 方法与参数 normalize 一起使用,并将其设为 True。
首先,导入必需的库 -
import pandas as pd
创建 Pandas 索引 -
index = pd.Index([50, 10, 70, 110, 90, 50, 110, 90, 30])
显示 Pandas 索引 -
print("Pandas Index...\n",index)
使用 value_counts() 获取唯一值的计数。将参数“normalize”设为 True 以获取相对频率 -
print("\nGet the relative frequency by dividing all values by the sum of values...\n", index.value_counts(normalize=True))
示例
以下为代码 -
import pandas as pd # Creating Pandas index index = pd.Index([50, 10, 70, 110, 90, 50, 110, 90, 30]) # Display the Pandas index print("Pandas Index...\n",index) # Return the number of elements in the Index print("\nNumber of elements in the index...\n",index.size) # Return the dtype of the data print("\nThe dtype object...\n",index.dtype) # Get the count of unique values using value_counts() # Set the parameter "normalize" to True to get the relative frequency print("\nGet the relative frequency by dividing all values by the sum of values...\n", index.value_counts(normalize=True))
输出
这将生成以下输出 -
Pandas Index... Int64Index([50, 10, 70, 110, 90, 50, 110, 90, 30], dtype='int64') Number of elements in the index... 9 The dtype object... int64 Get the relative frequency by dividing all values by the sum of values... 50 0.222222 110 0.222222 90 0.222222 10 0.111111 70 0.111111 30 0.111111 dtype: float64
广告