Python Pandas - 从索引对象返回相对频率


如需从 Index 对象返回相对频率,请将 index.value_counts() 方法与参数 normalize 一起使用,并将其设为 True

首先,导入必需的库 -

import pandas as pd

创建 Pandas 索引 -

index = pd.Index([50, 10, 70, 110, 90, 50, 110, 90, 30])

显示 Pandas 索引 -

print("Pandas Index...\n",index)

使用 value_counts() 获取唯一值的计数。将参数“normalize”设为 True 以获取相对频率 -

print("\nGet the relative frequency by dividing all values by the sum of values...\n", index.value_counts(normalize=True))

示例

以下为代码 -

import pandas as pd

# Creating Pandas index
index = pd.Index([50, 10, 70, 110, 90, 50, 110, 90, 30])

# Display the Pandas index
print("Pandas Index...\n",index)

# Return the number of elements in the Index
print("\nNumber of elements in the index...\n",index.size)

# Return the dtype of the data
print("\nThe dtype object...\n",index.dtype)

# Get the count of unique values using value_counts()
# Set the parameter "normalize" to True to get the relative frequency
print("\nGet the relative frequency by dividing all values by the sum of values...\n", index.value_counts(normalize=True))

输出

这将生成以下输出 -

Pandas Index...
Int64Index([50, 10, 70, 110, 90, 50, 110, 90, 30], dtype='int64')

Number of elements in the index...
9

The dtype object...
int64

Get the relative frequency by dividing all values by the sum of values...
50    0.222222
110   0.222222
90    0.222222
10    0.111111
70    0.111111
30    0.111111
dtype: float64

更新于: 13-Oct-2021

141 次浏览

开启你的职业生涯

完成课程以获得认证

开始
广告