使用遗传算法解决旅行商问题
旅行商问题 (TSP) 旨在找到连接一系列城市并返回起点的最短路径。由于其组合性质以及随着城市数量增加而呈指数级增长的路径数量,这是一个难题。遗传算法 (GA) 是一种受遗传学启发的启发式算法。它模拟自然选择来有效地解决 TSP 问题。GA 使用路径来表示城市巡游的候选方案。选择、交叉和变异在 GA 中进化种群。选择偏向适应性更高的路径,这表示其质量或接近理想解的程度。变异引入随机修改以探索新的解空间,而交叉则混合来自父路径的遗传信息以产生子代。
使用的方法
遗传算法
遗传算法
强大的启发式遗传算法 (GA) 受到自然选择和遗传学的启发。它模仿进化来有效地解决 TSP 问题。GA 中的每条路径都是一个可能的解决方案。适应度决定了路径的质量和最优性。GA 通过选择、交叉和变异适应度值较高的路径来发展新的种群。
算法
定义城市、最大世代数、种群大小和变异率。
定义一个城市结构,包含 x 和 y 坐标。
定义一个路径结构,包含城市索引向量(路径)和适应度值。
创建一个使用坐标确定城市距离的方法。
创建一个通过交换城市索引来创建随机路径的函数。
创建一个对城市距离求和以计算路径适应度的函数。
创建一个将两条父路径交叉以创建子路径的函数。
通过基于变异率的函数交换城市来变异路径。
实现一个基于适应度的路径查找工具。
示例
#include <iostream> #include <vector> #include <algorithm> #include <random> using namespace std; // Define the number of cities const int NUM_CITIES = 5; // Define the maximum generations for the GA const int MAX_GENERATIONS = 100; // Define the population size for the GA const int POPULATION_SIZE = 10; // Define the mutation rate for the GA const double MUTATION_RATE = 0.1; // Define a structure to represent a city struct City { int x; int y; }; // Define a structure to represent a route struct Route { vector<int> path; double fitness; }; // Calculate the distance between two cities double calculateDistance(const City& city1, const City& city2) { int dx = city1.x - city2.x; int dy = city1.y - city2.y; return sqrt(dx*dx + dy*dy); } // Generate a random route Route generateRandomRoute() { Route route; for (int i = 0; i < NUM_CITIES; ++i) { route.path.push_back(i); } random_shuffle(route.path.begin(), route.path.end()); return route; } // Calculate the fitness of a route (smaller distance is better) void calculateFitness(Route& route, const vector<City>& cities) { double totalDistance = 0.0; for (int i = 0; i < NUM_CITIES - 1; ++i) { int cityIndex1 = route.path[i]; int cityIndex2 = route.path[i+1]; totalDistance += calculateDistance(cities[cityIndex1], cities[cityIndex2]); } // Add distance from last city back to the starting city int lastCityIndex = route.path[NUM_CITIES - 1]; totalDistance += calculateDistance(cities[lastCityIndex], cities[route.path[0]]); route.fitness = totalDistance; } // Perform crossover between two parent routes to produce a child route Route crossover(const Route& parent1, const Route& parent2) { Route child; int startPos = rand() % NUM_CITIES; int endPos = rand() % NUM_CITIES; for (int i = 0; i < NUM_CITIES; ++i) { if (startPos < endPos && i > startPos && i < endPos) { child.path.push_back(parent1.path[i]); } else if (startPos > endPos && !(i < startPos && i > endPos)) { child.path.push_back(parent1.path[i]); } else { child.path.push_back(-1); } } for (int i = 0; i < NUM_CITIES; ++i) { if (find(child.path.begin(), child.path.end(), parent2.path[i]) == child.path.end()) { for (int j = 0; j < NUM_CITIES; ++j) { if (child.path[j] == -1) { child.path[j] = parent2.path[i]; break; } } } } return child; } // Mutate a route by swapping two cities void mutate(Route& route) { for (int i = 0; i < NUM_CITIES; ++i) { if ((double)rand() / RAND_MAX < MUTATION_RATE) { int swapIndex = rand() % NUM_CITIES; swap(route.path[i], route.path[swapIndex]); } } } // Find the best route in a population Route findBestRoute(const vector<Route>& population) { double bestFitness = numeric_limits<double>::max(); int bestIndex = -1; for (int i = 0; i < POPULATION_SIZE; ++i) { if (population[i].fitness < bestFitness) { bestFitness = population[i].fitness; bestIndex = i; } } return population[bestIndex]; } int main() { // Define the cities vector<City> cities = { {0, 0}, {1, 2}, {3, 1}, {4, 3}, {2, 4} }; // Initialize the population vector<Route> population; for (int i = 0; i < POPULATION_SIZE; ++i) { population.push_back(generateRandomRoute()); calculateFitness(population[i], cities); } // Perform the GA iterations for (int generation = 0; generation < MAX_GENERATIONS; ++generation) { vector<Route> newPopulation; // Generate offspring through selection, crossover, and mutation for (int i = 0; i < POPULATION_SIZE; ++i) { Route parent1 = findBestRoute(population); Route parent2 = findBestRoute(population); Route child = crossover(parent1, parent2); mutate(child); calculateFitness(child, cities); newPopulation.push_back(child); } // Replace the old population with the new population population = newPopulation; } // Find the best route Route bestRoute = findBestRoute(population); // Print the best route cout << "Best Route: "; for (int i = 0; i < NUM_CITIES; ++i) { cout << bestRoute.path[i] << " "; } cout << endl; // Print the total distance of the best route cout << "Total Distance: " << bestRoute.fitness << endl; return 0; }
输出
Best Route: 2 3 4 1 0 Total Distance: 12.1065
结论
最后,遗传算法 (GA) 可以解决旅行商问题 (TSP) 和其他组合优化问题。GA 迭代地搜索可行解的广阔搜索空间,利用遗传学和进化概念改进路径适应度并找到一个良好的解。GA 对 TSP 的处理平衡了探索和利用。通过选择、交叉和变异,GA 促进了更好路径的发展并保持种群多样性。GA 可以有效地搜索解空间并避免局部最优解。
广告