使用Python和Scrapy进行网页抓取?


Scrapy是开发爬虫的最佳框架之一。Scrapy是一个流行的网页抓取和爬取框架,它利用高级功能使抓取网站更容易。

安装

在Windows上安装Scrapy很容易:我们可以使用pip或conda(如果您有Anaconda)。Scrapy可以在Python 2和3版本上运行。

pip install Scrapy

或者

conda install –c conda-forge scrapy

如果Scrapy安装正确,现在终端中将可以使用scrapy命令。

C:\Users\rajesh>scrapy
Scrapy 1.6.0 - no active project

Usage:
scrapy <command> [options] [args]

Available commands:
bench    Run quick benchmark test
fetch    Fetch a URL using the Scrapy downloader
genspider   Generate new spider using pre-defined templates
runspider  Run a self-contained spider (without creating a project)
settings   Get settings values
shell   Interactive scraping console
startproject    Create new project
version    Print Scrapy version
view    Open URL in browser, as seen by Scrapy

[ more ] More commands available when run from project directory

Use "scrapy <command> -h" to see more info about a command.

启动项目

现在Scrapy已安装,我们可以运行**startproject**命令来生成第一个Scrapy项目的默认结构。

为此,请打开终端并导航到要存储Scrapy项目的目录,然后运行**scrapy startproject <项目名称>**。下面我使用scrapy_example作为项目名称。

C:\Users\rajesh>scrapy startproject scrapy_example
New Scrapy project 'scrapy_example', using template directory 'c:\python\python361\lib\site-packages\scrapy\templates\project', created in:
C:\Users\rajesh\scrapy_example

You can start your first spider with:
cd scrapy_example
scrapy genspider example example.com

C:\Users\rajesh>cd scrapy_example
C:\Users\rajesh\scrapy_example>tree /F
Folder PATH listing
Volume serial number is 8CD6-8D39
C:.
│ scrapy.cfg
│
└───scrapy_example
  │ items.py
  │ middlewares.py
  │ pipelines.py
  │ settings.py
  │ __init__.py
  │
  ├───spiders
  │ │ __init__.py
  │ │
  │ └───__pycache__
  └───__pycache__

另一种方法是运行scrapy shell并进行网页抓取,如下所示:

In [18]: fetch ("https://www.wsj.com/india")
019-02-04 22:38:53 [scrapy.core.engine] DEBUG: Crawled (200) https://www.wsj.com/india> (referer: None)

Scrapy爬虫将返回一个包含已下载信息的“response”对象。让我们检查一下上面的爬虫包含什么:

In [19]: view(response)
Out[19]: True

在您的默认浏览器中,网页链接将打开,您将看到类似的内容:

很好,这看起来与我们的网页有点相似,因此爬虫已成功下载整个网页。

现在让我们看看我们的爬虫包含什么:

In [22]: print(response.text)
<!DOCTYPE html>
<html data-region = "asia,india" data-protocol = "https" data-reactid = ".2316x0ul96e" data-react-checksum = "851122071">
   <head data-reactid = ".2316x0ul96e.0">
      <title data-reactid = ".2316x0ul96e.0.0">The Wall Street Journal & Breaking News, Business,   Financial and Economic News, World News and Video</title>
      <meta http-equiv = "X-UA-Compatible" content = "IE = edge" data-reactid = ".2316x0ul96e.0.1"/>
      <meta http-equiv = "Content-Type" content = "text/html; charset = UTF-8" data-reactid = ".2316x0ul96e.0.2"/>
      <meta name = "viewport" content = "initial-scale = 1.0001, minimum-scale = 1.0001, maximum-scale = 1.0001, 
         user-scalable = no" data-reactid = ".2316x0ul96e.0.3"/>
      <meta name = "description" content = "WSJ online coverage of breaking news and current headlines from the
         US and around the world. Top stories, photos, videos, detailed analysis and in-depth reporting." data-reactid = ".2316x0ul96e.0.4"/>
      <meta name = "keywords" content = "News, breaking news, latest news, US news, headlines, world news, 
         business, finances, politics, WSJ, WSJ news, WSJ.com, Wall Street Journal" data-reactid = ".2316x0ul96e.0.5"/>
      <meta name = "page.site" content = "wsj" data-reactid = ".2316x0ul96e.0.7"/>
      <meta name = "page.site.product" content = "WSJ" data-reactid = ".2316x0ul96e.0.8"/>
      <meta name = "stack.name" content = "dj01:vir:prod-sections" data-reactid = ".2316x0ul96e.0.9"/>
      <meta name = "referrer" content = "always" data-reactid = ".2316x0ul96e.0.a"/>
      <link rel = "canonical" href = "https://www.wsj.com/india/" data-reactid = ".2316x0ul96e.0.b"/>
      <meta nameproperty = "og:url" content = "https://www.wsj.com/india/" data-reactid = ".2316x0ul96e.0.c:$0"/>
      <meta nameproperty = "og:title" content = "The Wall Street Journal & Breaking News, Business, Financial 
         and Economic News, World News and Video" data-reactid = ".2316x0ul96e.0.c:$1"/>
      <meta nameproperty = "og:description" content = "WSJ online coverage of breaking news and current 
         headlines from the US and around the world. Top stories, photos, videos, detailed analysis and in-depth reporting." data-reactid = ".2316x0ul96e.0.c:$2"/>
      <meta nameproperty = "og:type" content = "website" data-reactid = ".2316x0ul96e.0.c:$3"/>
      <meta nameproperty = "og:site_name" content = "The Wall Street Journal" data-reactid = ".2316x0ul96e.0.c:$4"/>
      <meta nameproperty = "og:image" content = "https://s.wsj.net/img/meta/wsj-social-share.png" data-reactid = ".2316x0ul96e.0.c:$5"/>
      <meta name = "twitter:site" content = "@wsj" data-reactid = ".2316x0ul96e.0.c:$6"/>
      <meta name = "twitter:app:name:iphone" content = "The Wall Street Journal" data-reactid = ".2316x0ul96e.0.c:$7"/>
      <meta name = "twitter:app:name:googleplay" content = "The Wall Street Journal" data-reactid = " "/>
…& so much more:

让我们尝试从该网页中提取一些重要信息:

提取网页标题:

Scrapy提供了一种基于CSS选择器(如类、ID等)从HTML中提取信息的方法。要查找任何网页标题的CSS选择器,只需右键单击并单击“检查”,如下所示

这将在您的浏览器窗口中打开开发者工具:

可以看到,CSS类“wsj-headline-link”应用于所有具有标题的锚点(<a>)标签。有了这些信息,我们将尝试从response对象中的其余内容中查找所有标题:

response.css()是根据传递给它的CSS选择器(如上面的锚点标签)提取内容的函数。让我们看看response.css函数的更多示例。

In [24]: response.css(".wsj-headline-link::text").extract_first()

Out[24]: 'China Fears Loom Over Stocks After January Surge'

In [25]: response.css(".wsj-headline-link").extract_first()

Out[25]: '<a class="wsj-headline-link" href = "https://www.wsj.com/articles/china-fears-loom-over-stocks-after-january-surge-11549276200" data-reactid=".2316x0ul96e.1.1.5.1.0.3.3.0.0.0:$0.1.0">China Fears Loom Over Stocks After January Surge</a>'

要获取网页上的所有链接:

links = response.css('a::attr(href)').extract()

输出

['https://www.google.com/intl/en_us/chrome/browser/desktop/index.html',
'https://support.apple.com/downloads/',
'https://www.mozilla.org/en-US/firefox/new/',
'https://windows.microsoft.com/en-us/internet-explorer/download-ie',
'https://www.barrons.com',
'http://bigcharts.marketwatch.com',
'https://www.wsj.com/public/page/wsj-x-marketing.html',
'https://www.dowjones.com/',
'https://global.factiva.com/factivalogin/login.asp?productname=global',
'https://www.fnlondon.com/',
'https://www.mansionglobal.com/',
'https://www.marketwatch.com',
'https://newsplus.wsj.com',
'https://privatemarkets.dowjones.com',
'https://djlogin.dowjones.com/login.asp?productname=rnc',
'https://www.wsj.com/conferences',
'https://www.wsj.com/pro/centralbanking',
'https://www.wsj.com/video/',
'https://www.wsj.com',
'http://www.bigdecisions.com/',
'https://www.businessspectator.com.au/',
'https://www.checkout51.com/?utm_source=wsj&utm_medium=digitalhousead&utm_campaign=wsjspotlight',
'https://www.harpercollins.com/',
'https://housing.com/',
'https://www.makaan.com/',
'https://nypost.com/',
'https://www.newsamerica.com/',
'https://www.proptiger.com',
'https://www.rea-group.com/',
……
……

要获取wsj(华尔街日报)网页上的评论数:

In [38]: response.css(".wsj-comment-count::text").extract()

Out[38]: ['71', '59']

以上只是通过scrapy进行网页抓取的介绍,我们可以用scrapy做更多的事情。

更新于:2019年7月30日

608 次查看

启动您的职业生涯

完成课程获得认证

开始
广告