计算 1 到 n 之间所有数字中各个数字之和
在本教程中,我们将找到 1 到 n 之间所有数字各数字之和。例如,54 的各数字之和是 5 + 4 = 9,以此类推,我们需要找到所有数字以及其各数字之和。
我们知道,可以生成 10d - 1 个数字,它们的数字位数为 d。若要找到所有位数为 d 的数字之和,我们可以使用递归公式。
sum(10d- 1)=sum(10d-1- 1)*10+45*(10d-1)
输入和输出
Input: This algorithm takes the upper limit of the range, say it is 20. Output: Sum of digits in all numbers from 1 to n. Here the result is 102
算法
digitSumInRange(n)
输入:范围的上限。
输出 −指定范围(1-n)内所有数字的各数字之和。
Begin if n < 10, then return n(n+1)/2 digit := number of digits in number d := digit – 1 define place array of size digit place[0] := 0 place[1] := 45 for i := 2 to d, do place[i] := place[i-1]*10 + 45 * ceiling(10^(i-1)) power := ceiling(10^d) msd := n/power res := msd*place[d] + (msd*(msd-1)/2)*power + msd*(1+n mod power) + digitSumInRange(n mod power) return res done End
示例
#include<iostream> #include<cmath> using namespace std; int digitSumInRange(int n) { if (n<10) return n*(n+1)/2; //when one digit number find sum with formula int digit = log10(n)+1; //number of digits in number int d = digit-1; //decrease digit count by 1 int *place = new int[d+1]; //create array to store sum upto 1 to 10^place[i] place[0] = 0; place[1] = 45; for (int i=2; i<=d; i++) place[i] = place[i-1]*10 + 45*ceil(pow(10,i-1)); int power = ceil(pow(10, d)); //computing the power of 10 int msd = n/power; //find most significant digit return msd*place[d] + (msd*(msd-1)/2)*power + msd*(1+n%power) + digitSumInRange(n%power); //recursively find the sum } int main() { int n; cout << "Enter upper limit of the range: "; cin >> n; cout << "Sum of digits in range (1 to " << n << ") is: " << digitSumInRange(n); }
输出
Enter upper limit of the range: 20 Sum of digits in range (1 to 20) is: 102
广告