不含连续 1 的二进制字符串计数
在这个问题中,我们必须找到一些没有连续 1 的二进制数。在 3 位二进制字符串中,有三个二进制数 011、110、111 具有连续的 1,并且有五个数字没有连续的 1。因此,将此算法应用于 3 位数字后,答案将为 5。
如果 a[i] 是位数为 I 且不包含任何连续 1 的二进制数的集合,而 b[i] 是位数为 I 且包含连续 1 的二进制数的集合,则存在如下递归关系
a[i] := a[i - 1] + b[i - 1] b[i] := a[i - 1]
输入和输出
Input: This algorithm takes number of bits for a binary number. Let the input is 4. Output: It returns the number of binary strings which have no consecutive 1’s. Here the result is: 8. (There are 8 binary strings which has no consecutive 1’s)
算法
countBinNums(n)
输入:n 是位数。
输出 - 统计没有连续 1 的数字有多少个。
Begin define lists with strings ending with 0 and ending with 1 endWithZero[0] := 1 endWithOne[0] := 1 for i := 1 to n-1, do endWithZero[i] := endWithZero[i-1] + endWithOne[i-1] endWithOne[i] := endWithZero[i-1] done return endWithZero[n-1] + endWithOne[n-1] End
Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.
示例
#include <iostream> using namespace std; int countBinNums(int n) { int endWithZero[n], endWithOne[n]; endWithZero[0] = endWithOne[0] = 1; for (int i = 1; i < n; i++) { endWithZero[i] = endWithZero[i-1] + endWithOne[i-1]; endWithOne[i] = endWithZero[i-1]; } return endWithZero[n-1] + endWithOne[n-1]; } int main() { int n; cout << "Enter number of bits: "; cin >> n; cout << "Number of binary numbers without consecitive 1's: "<<countBinNums(n) << endl; return 0; }
输出
Enter number of bits: 4 Number of binary numbers without consecitive 1's: 8
广告