使用Numpy将输入转换为至少三维的数组


要将输入转换为至少三维的数组,请在Python Numpy中使用**ma.atleast_3d()**方法。参数是一个或多个类数组序列。非数组输入将转换为数组。已经具有三个或更多维度的数组将被保留。

该函数返回一个数组或数组列表,每个数组的a.ndim >= 3。尽可能避免复制,并返回具有三个或更多维度的视图。例如,形状为(N,)的一维数组将成为形状为(1, N, 1)的视图,形状为(M, N)的二维数组将成为形状为(M, N, 1)的视图。它应用于_data和_mask(如果存在)。

步骤

首先,导入所需的库:

import numpy as np
import numpy.ma as ma

使用numpy.array()方法创建一个包含整数元素的数组:

arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr) print("
Array type...
", arr.dtype)

获取数组的维度:

print("
Array Dimensions...
",arr.ndim)

创建一个掩码数组并将其中一些标记为无效:

maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)

获取掩码数组的维度:

print("
Our Masked Array Dimensions...
",maskArr.ndim)

获取掩码数组的形状:

print("
Our Masked Array Shape...
",maskArr.shape)

获取掩码数组的元素数量:

print("
Elements in the Masked Array...
",maskArr.size)

要将输入转换为至少三维的数组,请在Python Numpy中使用ma.atleast_3d()方法:

print("
Result...
",np.atleast_3d(1, maskArr))

示例

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To convert inputs to arrays with at least three dimensions, use the ma.atleast_3d() method in Python Numpy print("
Result...
",np.atleast_3d(1, maskArr))

输出

Array...
[[65 68 81]
[93 33 39]
[73 88 51]
[62 45 67]]

Array type...
int64

Array Dimensions...
2

Our Masked Array
[[-- -- 81]
[-- 33 39]
[73 -- 51]
[62 -- 67]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(4, 3)

Elements in the Masked Array...
12

Result...
[array([[[1]]]), masked_array(
data=[[[--],
[--],
[81]],
[[--],
[33],
[39]],
[[73],
[--],
[51]],
[[62],
[--],
[67]]],

mask=[[[ True],
[ True],
[False]],
[[ True],
[False],
[False]],
[[False],
[ True],
[False]],
[[False],
[ True],
[False]]],
fill_value=999999)]

更新于:2022年2月4日

209 次查看

开启你的职业生涯

完成课程获得认证

开始学习
广告
© . All rights reserved.