C++程序:判断从特定城市出发是否可以进行环形旅行
假设有n个城市和m条连接它们的道路。每条道路都是单向的,从起点城市到终点城市需要特定时间。道路信息存储在数组roads中,每个元素的格式为(起点城市,终点城市,时间)。现在,一个人从一个城市到另一个城市旅行,并且旅行必须是环形旅行。当一个人从特定城市出发,经过一条或多条道路,最终回到同一城市时,该旅行可以被称为环形旅行。因此,对于每个城市,我们必须确定从该特定城市出发是否可以进行环形旅行。如果可以,则打印执行环形旅行所需的时间,否则打印-1。
例如,如果输入为n = 4,m = 4,roads = {{1, 2, 5}, {2, 3, 8}, {3, 4, 7}, {4, 1, 6}},则输出为:26 26 26 26。从每个城市出发,执行环形旅行都需要26个时间单位。
为了解决这个问题,我们将遵循以下步骤:
Define one 2D array graph(n) of pairs for initialize i := 0, when i < m, update (increase i by 1), do: x := first value of roads[i] y := second value of roads[i] z := third value of roads[i] decrease x and y by 1 insert pair (y, z) at the end of graph[x] for initialize i := 0, when i < n, update (increase i by 1), do: q := a new priority queue Define an array dst insert pair (0, i) at the top of q while size of q is non-zero, do: pair p := top value of q delete the top element from q dt := first value of p curr := second value of p if dst[curr] is same as 0, then: dst[curr] := dt Come out from the loop if dst[curr] is not equal to -1, then: Ignore following part, skip to the next iteration dst[curr] := dt for element next in graph[curr], do: tp := first value of next cst := second value of next insert pair(dt + cst, tp) at the top of q if dst[i] is same as 0, then: dst[i] := -1 print(dst[i])
示例
让我们看看以下实现,以便更好地理解:
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; const int modval = (int) 1e9 + 7; #define N 100 void solve(int n, int m, vector<tuple<int, int, int>> roads ) { vector<vector<pair<int, int>>> graph(n); for(int i = 0; i < m; i++) { int x, y, z; tie(x, y, z) = roads[i]; x--; y--; graph[x].emplace_back(y, z); } for(int i = 0; i < n; i++) { priority_queue<pair<int, int>> q; vector<int> dst(n, -1); q.emplace(0, i); while(q.size()){ pair<int, int> p = q.top(); q.pop(); int curr, dt; tie(dt, curr) = p; if(dst[curr] == 0) { dst[curr] = dt; break; } if(dst[curr] != -1) continue; dst[curr] = dt; for(auto next : graph[curr]){ int tp, cst; tie(tp, cst) = next; q.emplace(dt + cst, tp); } } if(dst[i] == 0) dst[i] = -1; cout<< dst[i]<< endl; } } int main() { int n = 4, m = 4; vector<tuple<int, int, int>> roads = {{1, 2, 5}, {2, 3, 8}, {3, 4, 7}, {4, 1, 6}}; solve(n, m, roads); return 0; }
输入
4, 4, {{1, 2, 5}, {2, 3, 8}, {3, 4, 7}, {4, 1, 6}}
输出
26 26 26 26
广告