找出 n 个整数配对中最小差值差的 C++ 程序
假设,我们给定两个数组 a 和 b,分别包含 n 和 m 个值。我们必须使用两个数组中的值生成 n 个或 m 个对(以较小的为准)。一个对必须包含来自数组 a 的一个值和来自数组 b 的另一个值。我们必须生成这样的对,使得对中的值的差值最小并且相同。我们将结果打印为输出。
因此,如果输入为 n = 4,m = 4,a = {2, 3, 4, 7},b = {3, 4, 6, 5},则输出将为 1。
可以生成的配对为:
(3, 4), (4, 5), (7, 6), (2, 3).
所有对中的值的差值为 1。
步骤
为了解决这个问题,我们将按照以下步骤进行:
sort the array a Define an array s1 initialized with 0 Define an array s2 initialized with 0 for initialize i := 1, when i < n, update i := i + 2, do: insert last element of s1 + a[i] - a[i - 1] at the end of s1 for initialize i := 2, when i < n, update i := i + 2, do: insert last element of s2 + a[i] - a[i - 1] at the end of s2 ans := infinity for each value w in b, do: diff := first element in the array a not less than w - first value of a sub := last element of s1[diff / 2] + s2 ans := minimum of ans and sub print(ans)
示例
让我们看以下实现以获得更好的理解:
#include <bits/stdc++.h> using namespace std; const int INF = 1e9; void solve(int n, int m, vector<int> a, vector<int> b){ sort(a.begin(), a.end()); vector<int> s1 = {0}; vector<int> s2 = {0}; for (int i = 1; i < n; i += 2) s1.push_back(a[i] - a[i - 1] + s1.back()); for (int i = 2; i < n; i += 2) s2.push_back(a[i] - a[i - 1] + s2.back()); int ans = INF; for (const auto & w : b) { int diff = lower_bound(a.begin(), a.end(), w) - a.begin(); int sub = s1[diff / 2] + s2.back() - s2[diff / 2] + abs(a[diff / 2 * 2] - w); ans = min(ans, sub); } cout << ans << endl; } int main() { int n = 4, m = 4; vector<int> a = {2, 3, 4, 7}, b = {3, 4, 6, 5}; solve(n, m, a, b); return 0; }
输入
4, 4, {2, 3, 4, 7}, {3, 4, 6, 5}
输出
1
广告