C++ 程序来实现插值搜索算法
对于二分搜索技术,将列表分成相等的部分。对于插值搜索技术,该过程将尝试使用插值公式找到确切的位置。找到估计位置后,它可以使用该位置分割列表。因为它每次都尝试找到确切的位置,所以搜索时间减少了。如果项目是均匀分布的,则此技术可以轻松地找到项目。
插值搜索技术的复杂性
时间复杂度:对于平均情况为 O(log2(log2 n)),对于最坏情况为 O(n)(当项目呈指数分布时)
空间复杂度:O(1)
Input − A sorted list of data 10 13 15 26 28 50 56 88 94 127 159 356 480 567 689 699 780 850 956 995. The search key 780 Output − Item found at location: 16
算法
interpolationSearch(array, start, end, key)
输入:一个已排序的数组、开始和结束位置以及搜索键
输出:密钥的位置(如果找到),否则位置错误。
Begin
while start <= end AND key >= array[start] AND key <= array[end] do
dist := key – array[start]
valRange := array[end] – array[start]
fraction := dist / valRange
indexRange := end – start
estimate := start + (fraction * indexRange)
if array[estimate] = key then
return estimate position
if array[estimate] < key then
start := estimate + 1
else
end = estimate -1
done
return invalid position
End示例代码
#include<iostream>
using namespace std;
int interpolationSearch(int array[], int start, int end, int key) {
int dist, valRange, indexRange, estimate;
float fraction;
while(start <= end && key >= array[start] && key <= array[end]) {
dist = key - array[start];
valRange = array[end] - array[start]; //range of value
fraction = dist / valRange;
indexRange = end - start;
estimate = start + (fraction * indexRange); //estimated position of the key
if(array[estimate] == key)
return estimate;
if(array[estimate] < key)
start = estimate +1;
else
end = estimate - 1;
}
return -1;
}
int main() {
int n, searchKey, loc;
cout << "Enter number of items: ";
cin >> n;
int arr[n]; //create an array of size n
cout << "Enter items: " << endl;
for(int i = 0; i< n; i++) {
cin >> arr[i];
}
cout << "Enter search key to search in the list: ";
cin >> searchKey;
if((loc = interpolationSearch(arr, 0, n-1, searchKey)) >= 0)
cout << "Item found at location: " << loc << endl;
else
cout << "Item is not found in the list." << endl;
}输出
Enter number of items: 20 Enter items: 10 13 15 26 28 50 56 88 94 127 159 356 480 567 689 699 780 850 956 995 Enter search key to search in the list: 780 Item found at location: 16
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP