C++ 程序实现自平衡二叉查找树
红黑树是一种自平衡二叉查找树,其中所有节点的左右子树高度差均不会超过 1。
这是一个实现自平衡二叉查找树的 C++ 程序。
Begin class avl_tree to declare following functions: balance() = Balance the tree by getting balance factor. Put the difference in bal_factor. If bal_factor > 1 then balance the left subtree. If bal_factor < -1 then balance the right subtree. insert() = To insert the elements in the tree: If tree is empty insert data as root. If tree is not empty and data > root Insert data as left child. Else Insert data as right child. End.
示例代码
#include<iostream> #include<cstdio> #include<sstream> #include<algorithm> #define pow2(n) (1 << (n)) using namespace std; struct avl//node declaration { int d; struct avl *l; struct avl *r; }*r; class avl_tree { public://declare functions int height(avl *); int difference(avl *); avl * rr_rotat(avl *); avl * ll_rotat(avl *); avl * lr_rotat(avl*); avl * rl_rotat(avl *); avl * balance(avl *); avl * insert(avl *, int); void show(avl *, int); void inorder(avl *); void preorder(avl *); void postorder(avl*); avl_tree() { r = NULL; } }; int avl_tree::height(avl *t) { int h = 0; if (t != NULL) { int l_height = height(t→l); int r_height = height(t→r); int max_height = max(l_height, r_height); h = max_height + 1; } return h; } int avl_tree::difference(avl *t)//calculte difference between left and right tree { int l_height = height(t→l); int r_height = height(t→r); int b_factor = l_height - r_height; return b_factor; } avl *avl_tree::rr_rotat(avl *parent)//right right rotation { avl *t; t = parent→r; parent→r = t→l; t->l = parent; cout<<"Right-Right Rotation"; return t; } avl *avl_tree::ll_rotat(avl *parent)//left left rotation { avl *t; t = parent→l; parent→l = t->r; t->r = parent; cout<<"Left-Left Rotation"; return t; } avl *avl_tree::lr_rotat(avl *parent)//left right rotation { avl *t; t = parent→l; parent->l = rr_rotat(t); cout<<"Left-Right Rotation"; return ll_rotat(parent); } avl *avl_tree::rl_rotat(avl *parent)//right left rotation { avl *t; t= parent→r; parent->r = ll_rotat(t); cout<<"Right-Left Rotation"; return rr_rotat(parent); } avl *avl_tree::balance(avl *t) { int bal_factor = difference(t); if (bal_factor > 1) { if (difference(t->l) > 0) t = ll_rotat(t); else t = lr_rotat(t); } else if (bal_factor < -1) { if (difference(t->r) > 0) t = rl_rotat(t); else t = rr_rotat(t); } return t; } avl *avl_tree::insert(avl *r, int v) { if (r == NULL) { r = new avl; r->d = v; r->l = NULL; r->r= NULL; return r; } else if (v< r→d) { r->l= insert(r→l, v); r = balance(r); } else if (v >= r→d) { r->r= insert(r→r, v); r = balance(r); } return r; } void avl_tree::show(avl *p, int l)//show the tree { int i; if (p != NULL) { show(p->r, l+ 1); cout<<" "; if (p == r) cout << "Root → "; for (i = 0; i < l&& p != r; i++) cout << " "; cout << p→d; show(p->l, l + 1); } } void avl_tree::inorder(avl *t)//inorder traversal { if (t == NULL) return; inorder(t->l); cout << t->d << " "; inorder(t->r); } void avl_tree::preorder(avl *t)//preorder traversal { if (t == NULL) return; cout << t->d << " "; preorder(t->l); preorder(t->r); } void avl_tree::postorder(avl *t)//postorder traversal { if (t == NULL) return; postorder(t ->l); postorder(t ->r); cout << t→d << " "; } int main() { int c, i; avl_tree avl; while (1) { cout << "1.Insert Element into the tree" << endl; cout << "2.show Balanced AVL Tree" << endl; cout << "3.InOrder traversal" << endl; cout << "4.PreOrder traversal" << endl; cout << "5.PostOrder traversal" << endl; cout << "6.Exit" << endl; cout << "Enter your Choice: "; cin >> c; switch ©//perform switch operation { case 1: cout << "Enter value to be inserted: "; cin >> i; r= avl.insert(r, i); break; case 2: if (r == NULL) { cout << "Tree is Empty" << endl; continue; } cout << "Balanced AVL Tree:" << endl; avl.show(r, 1); cout<<endl; break; case 3: cout << "Inorder Traversal:" << endl; avl.inorder(r); cout << endl; break; case 4: cout << "Preorder Traversal:" << endl; avl.preorder(r); cout << endl; break; case 5: cout << "Postorder Traversal:" << endl; avl.postorder(r); cout << endl; break; case 6: exit(1); break; default: cout << "Wrong Choice" << endl; } } return 0; }
输出
1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 13 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 15 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 5 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 11 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 4 Left-Left Rotation1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 8 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 3 Inorder Traversal: 4 5 8 10 11 13 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 4 Preorder Traversal: 10 5 4 8 13 11 15 16 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 5 Postorder Traversal: 4 8 5 11 16 15 13 10 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 14 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 3 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 7 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 9 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 1 Enter value to be inserted: 52 Right-Right Rotation 1.Insert Element into the tree 2.show Balanced AVL Tree 3.InOrder traversal 4.PreOrder traversal 5.PostOrder traversal 6.Exit Enter your Choice: 6
广告