C++ 程序实现自平衡二叉查找树


红黑树是一种自平衡二叉查找树,其中所有节点的左右子树高度差均不会超过 1。

这是一个实现自平衡二叉查找树的 C++ 程序。

Begin
class avl_tree to declare following functions:
balance() = Balance the tree by getting balance factor. Put the
   difference in bal_factor. If bal_factor > 1 then balance the
left subtree.
   If bal_factor < -1 then balance the right subtree.
insert() = To insert the elements in the tree:
   If tree is empty insert data as root.
      If tree is not empty and data > root
         Insert data as left child.
      Else
         Insert data as right child.
End.

示例代码

#include<iostream>
#include<cstdio>
#include<sstream>
#include<algorithm>
#define pow2(n) (1 << (n))
using namespace std;
struct avl//node declaration
{
   int d;
   struct avl *l;
   struct avl *r;
}*r;
class avl_tree
{
   public://declare functions
   int height(avl *);
   int difference(avl *);
   avl * rr_rotat(avl *);
   avl * ll_rotat(avl *);
   avl * lr_rotat(avl*);
   avl * rl_rotat(avl *);
   avl * balance(avl *);
   avl * insert(avl *, int);
   void show(avl *, int);
   void inorder(avl *);
   void preorder(avl *);
   void postorder(avl*);
   avl_tree()
   {
      r = NULL;
   }
};
int avl_tree::height(avl *t)
{
   int h = 0;
   if (t != NULL)
   {
      int l_height = height(t→l);
      int r_height = height(t→r);
      int max_height = max(l_height, r_height);
      h = max_height + 1;
   }
   return h;
}
int avl_tree::difference(avl *t)//calculte difference between left and
right tree
{
   int l_height = height(t→l);
   int r_height = height(t→r);
   int b_factor = l_height - r_height;
   return b_factor;
}
avl *avl_tree::rr_rotat(avl *parent)//right right rotation
{
   avl *t;
   t = parent→r;
   parent→r = t→l;
   t->l = parent;
   cout<<"Right-Right Rotation";
   return t;
}
avl *avl_tree::ll_rotat(avl *parent)//left left rotation
{
   avl *t;
   t = parent→l;
   parent→l = t->r;  
   t->r = parent;
   cout<<"Left-Left Rotation";
   return t;
}
avl *avl_tree::lr_rotat(avl *parent)//left right rotation
{
   avl *t;
   t = parent→l;
   parent->l = rr_rotat(t);
   cout<<"Left-Right Rotation";
   return ll_rotat(parent);
}
avl *avl_tree::rl_rotat(avl *parent)//right left rotation
{
   avl *t;
   t= parent→r;
   parent->r = ll_rotat(t);
   cout<<"Right-Left Rotation";
   return rr_rotat(parent);
}
avl *avl_tree::balance(avl *t)
{
   int bal_factor = difference(t);
   if (bal_factor > 1)
   {
      if (difference(t->l) > 0)
      t = ll_rotat(t);
      else
      t = lr_rotat(t);
   }
   else if (bal_factor < -1)
   {
      if (difference(t->r) > 0)
      t = rl_rotat(t);
      else
      t = rr_rotat(t);
   }
   return t;
   }
   avl *avl_tree::insert(avl *r, int v)
   {
      if (r == NULL)
      {
         r = new avl;
         r->d = v;
         r->l = NULL;
         r->r= NULL;
         return r;
      }
      else if (v< r→d)
      {
         r->l= insert(r→l, v);
         r = balance(r);
      }
      else if (v >= r→d)
      {
         r->r= insert(r→r, v);
         r = balance(r);
      }
      return r;
   }
   void avl_tree::show(avl *p, int l)//show the tree
   {
      int i;
      if (p != NULL)
      {
         show(p->r, l+ 1);
         cout<<" ";
         if (p == r)
         cout << "Root → ";
         for (i = 0; i < l&& p != r; i++)
         cout << " ";
         cout << p→d;
         show(p->l, l + 1);
      }
   }
   void avl_tree::inorder(avl *t)//inorder traversal
   {
      if (t == NULL)
      return;
      inorder(t->l);
      cout << t->d << " ";
      inorder(t->r);
   }
   void avl_tree::preorder(avl *t)//preorder traversal
   {
      if (t == NULL)
      return;
      cout << t->d << " ";
      preorder(t->l);
      preorder(t->r);
   }
   void avl_tree::postorder(avl *t)//postorder traversal
   {
      if (t == NULL)
      return;
      postorder(t ->l);
      postorder(t ->r);
      cout << t→d << " ";
   }
   int main()
   {
      int c, i;
      avl_tree avl;
      while (1)
      {
         cout << "1.Insert Element into the tree" << endl;
         cout << "2.show Balanced AVL Tree" << endl;
         cout << "3.InOrder traversal" << endl;
         cout << "4.PreOrder traversal" << endl;
         cout << "5.PostOrder traversal" << endl;
         cout << "6.Exit" << endl;
         cout << "Enter your Choice: ";
         cin >> c;
         switch ©//perform switch operation
         {
            case 1:
               cout << "Enter value to be inserted: ";
               cin >> i;
               r= avl.insert(r, i);
               break;
            case 2:
               if (r == NULL)
               {
                  cout << "Tree is Empty" << endl;
                  continue;
               }
                  cout << "Balanced AVL Tree:" << endl;
                  avl.show(r, 1);
                  cout<<endl;
                  break;
            case 3:
               cout << "Inorder Traversal:" << endl;
               avl.inorder(r);
               cout << endl;
               break;
            case 4:
               cout << "Preorder Traversal:" << endl;
               avl.preorder(r);
               cout << endl;
               break;
            case 5:
               cout << "Postorder Traversal:" << endl;
               avl.postorder(r);
               cout << endl;
               break;
            case 6:
               exit(1);
               break;
            default:
               cout << "Wrong Choice" << endl;
      }
   }
   return 0;
}

输出

1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 13
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 10
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 15
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 5
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 11
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 4
Left-Left Rotation1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 8
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 16
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 3
Inorder Traversal:
4 5 8 10 11 13 15 16
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 4
Preorder Traversal:
10 5 4 8 13 11 15 16
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 5
Postorder Traversal:
4 8 5 11 16 15 13 10
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 14
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 3
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 7
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 9
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 1
Enter value to be inserted: 52
Right-Right Rotation
1.Insert Element into the tree
2.show Balanced AVL Tree
3.InOrder traversal
4.PreOrder traversal
5.PostOrder traversal
6.Exit
Enter your Choice: 6

更新日期:2019 年 7 月 30 日

1K+ 浏览

启动你的 职业

完成课程并通过认证

开始
广告