实现 Treap 的 C++ 程序


这是一个实现 Treap 的 C++ 程序。Treap 数据结构基本上是一个随机的二叉查找树。在这里,我们考虑以此为基础进行插入、删除和搜索操作。

函数及说明


用于左旋的函数 rotLeft()首先旋转树,然后设置新根。
用于右旋的函数 rotRight()首先旋转树,然后设置新根。


函数 insetNod() 用于递归地将给定键值及优先级插入到 Treap 中 -

If root = nullptr
   return data as root.
If given data is less then root node,
   Insert data in left subtree.
   Rotate left if heap property violated.
else
   Insert data in right subtree.
   Rotate right if heap property violated.

函数 searchNod() 用于递归地搜索 Treap 中的键值 -

If key is not present return false.
If key is present return true.
If key is less than root, search in left subtree.
Else
   search in right subtree.

函数 deleteNod() 用于递归地从 Treap 中删除键值 -

If key is not present return false
If key is present return true.
If key is less than root, go to left subtree.
Else
   Go to right subtree.
If key is found:
   node to be deleted which is a leaf node
      deallocate the memory and update root to null.
      delete root.
   node to be deleted which has two children
      if left child has less priority than right child
         call rotLeft() on root
         recursively delete the left child
      else
         call rotRight() on root
         recursively delete the right child
   node to be deleted has only one child
         find child node
      deallocate the memory
   Print the result.
End

示例

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
struct TreapNod  { //node declaration
   int data;
   int priority;
   TreapNod* l, *r;
   TreapNod(int d) { //constructor
      this->data = d;
      this->priority = rand() % 100;
      this->l= this->r = nullptr;
   }
};
void rotLeft(TreapNod* &root) { //left rotation
   TreapNod* R = root->r;
   TreapNod* X = root->r->l;
   R->l = root;
   root->r= X;
   root = R;
}
void rotRight(TreapNod* &root) { //right rotation
   TreapNod* L = root->l;
   TreapNod* Y = root->l->r;
   L->r = root;
   root->l= Y;
   root = L;
}
void insertNod(TreapNod* &root, int d) { //insertion
   if (root == nullptr) {
      root = new TreapNod(d);
      return;
   }
   if (d < root->data) {
      insertNod(root->l, d);
      if (root->l != nullptr && root->l->priority > root->priority)
      rotRight(root);
   } else {
      insertNod(root->r, d);
      if (root->r!= nullptr && root->r->priority > root->priority)
      rotLeft(root);
   }
}
bool searchNod(TreapNod* root, int key) {
   if (root == nullptr)
      return false;
   if (root->data == key)
      return true;
   if (key < root->data)
      return searchNod(root->l, key);
      return searchNod(root->r, key);
}
void deleteNod(TreapNod* &root, int key) {
   //node to be deleted which is a leaf node
   if (root == nullptr)
      return;
   if (key < root->data)
      deleteNod(root->l, key);
   else if (key > root->data)
      deleteNod(root->r, key);
      //node to be deleted which has two children
   else {
      if (root->l ==nullptr && root->r == nullptr) {
         delete root;
         root = nullptr;
      }
      else if (root->l && root->r) {
         if (root->l->priority < root->r->priority) {
            rotLeft(root);
            deleteNod(root->l, key);
         } else {
            rotRight(root);
            deleteNod(root->r, key);
         }
      }
      //node to be deleted has only one child
      else {
         TreapNod* child = (root->l)? root->l: root->r;
         TreapNod* curr = root;
         root = child;
         delete curr;
      }
   }
}
void displayTreap(TreapNod *root, int space = 0, int height =10) { //display treap
   if (root == nullptr)
      return;
   space += height;
   displayTreap(root->l, space);
   cout << endl;
   for (int i = height; i < space; i++)
      cout << ' ';
      cout << root->data << "(" << root->priority << ")\n";
      cout << endl;
   displayTreap(root->r, space);
}
int main() {
   int nums[] = {1,7,6,4,3,2,8,9,10 };
   int a = sizeof(nums)/sizeof(int);
   TreapNod* root = nullptr;
   srand(time(nullptr));
   for (int n: nums)
      insertNod(root, n);
   cout << "Constructed Treap:\n\n";
   displayTreap(root);
   cout << "\nDeleting node 8:\n\n";
   deleteNod(root, 8);
   displayTreap(root);
   cout << "\nDeleting node 3:\n\n";
   deleteNod(root, 3);
   displayTreap(root);
   return 0;
}

输出

Constructed Treap:

1(12)

2(27)

3(97)

4(46)

6(75)

7(88)

8(20)

9(41)

10(25)

Deleting node 8:

1(12)

2(27)

3(97)

4(46)

6(75)

7(88)

9(41)

10(25)

Deleting node 3:

1(12)

2(27)

4(46)

6(75)

7(88)

9(41)

10(25)

更新于:2019 年 7 月 30 日

超过 1 千次浏览

开启您的 职业生涯

完成课程可获得认证

开始
广告
© . All rights reserved.