福特-福克森算法
福特-福克森算法用于检测给定图中从起始顶点到汇顶点的最大流量。在此图中,每条边都有容量。提供了两个名为源和汇的顶点。源顶点具有所有外向边,没有内向边,而汇将具有所有内向边,没有外向边。
有一些约束
- 边上的流量不得超过该图的给定容量。
- 除源和汇外,每条边的流入流量和流出流量也将相等。
输入和输出
Input: The adjacency matrix: 0 10 0 10 0 0 0 0 4 2 8 0 0 0 0 0 0 10 0 0 0 0 9 0 0 0 6 0 0 10 0 0 0 0 0 0 Output: Maximum flow is: 19
算法
bfs(vert, start, sink)
输入: 顶点列表、起始节点和汇节点。
输出 − 当访问汇节点时为真。
Begin initially mark all nodes as unvisited state of start as visited predecessor of start node is φ insert start into the queue qu while qu is not empty, do delete element from queue and set to vertex u for all vertices i, in the residual graph, do if u and i are connected, and i is unvisited, then add vertex i into the queue predecessor of i is u mark i as visited done done return true if state of sink vertex is visited End
fordFulkerson(vert, source, sink)
输入:顶点列表、源顶点和汇顶点。
输出 − 从起始到汇的最大流量。
Begin create a residual graph and copy given graph into it while bfs(vert, source, sink) is true, do pathFlow := ∞ v := sink vertex while v ≠ start vertex, do u := predecessor of v pathFlow := minimum of pathFlow and residualGraph[u, v] v := predecessor of v done v := sink vertex while v ≠ start vertex, do u := predecessor of v residualGraph[u,v] := residualGraph[u,v] – pathFlow residualGraph[v,u] := residualGraph[v,u] – pathFlow v := predecessor of v done maFlow := maxFlow + pathFlow done return maxFlow End
示例
#include<iostream> #include<queue> #define NODE 6 using namespace std; typedef struct node { int val; int state; //status int pred; //predecessor }node; int minimum(int a, int b) { return (a<b)?a:b; } int resGraph[NODE][NODE]; /* int graph[NODE][NODE] = { {0, 16, 13, 0, 0, 0}, {0, 0, 10, 12, 0, 0}, {0, 4, 0, 0, 14, 0}, {0, 0, 9, 0, 0, 20}, {0, 0, 0, 7, 0, 4}, {0, 0, 0, 0, 0, 0} }; */ int graph[NODE][NODE] = { {0, 10, 0, 10, 0, 0}, {0, 0, 4, 2, 8, 0}, {0, 0, 0, 0, 0, 10}, {0, 0, 0, 0, 9, 0}, {0, 0, 6, 0, 0, 10}, {0, 0, 0, 0, 0, 0} }; int bfs(node *vert, node start, node sink) { node u; int i, j; queue<node> que; for(i = 0; i<NODE; i++) { vert[i].state = 0; //not visited } vert[start.val].state = 1; //visited vert[start.val].pred = -1; //no parent node que.push(start); //insert starting node while(!que.empty()) { //delete from queue and print u = que.front(); que.pop(); for(i = 0; i<NODE; i++) { if(resGraph[u.val][i] > 0 && vert[i].state == 0) { que.push(vert[i]); vert[i].pred = u.val; vert[i].state = 1; } } } return (vert[sink.val].state == 1); } int fordFulkerson(node *vert, node source, node sink) { int maxFlow = 0; int u, v; for(int i = 0; i<NODE; i++) { for(int j = 0; j<NODE; j++) { resGraph[i][j] = graph[i][j]; //initially residual graph is main graph } } while(bfs(vert, source, sink)) { //find augmented path using bfs algorithm int pathFlow = 999;//as infinity for(v = sink.val; v != source.val; v=vert[v].pred) { u = vert[v].pred; pathFlow = minimum(pathFlow, resGraph[u][v]); } for(v = sink.val; v != source.val; v=vert[v].pred) { u = vert[v].pred; resGraph[u][v] -= pathFlow; //update residual capacity of edges resGraph[v][u] += pathFlow; //update residual capacity of reverse edges } maxFlow += pathFlow; } return maxFlow; //the overall max flow } int main() { node vertices[NODE]; node source, sink; for(int i = 0; i<NODE; i++) { vertices[i].val = i; } source.val = 0; sink.val = 5; int maxFlow = fordFulkerson(vertices, source, sink); cout << "Maximum flow is: " << maxFlow << endl; }
输出
Maximum flow is: 19
广告