在Python中生成拉盖尔多项式和x, y点阵的伪范德蒙德矩阵
要生成拉盖尔多项式的伪范德蒙德矩阵,请在Python NumPy中使用`laguerre.lagvander2d()`。该方法返回伪范德蒙德矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应拉盖尔多项式的阶数。dtype将与转换后的x相同。
参数x, y返回点阵。dtype根据是否有任何元素为复数而转换为float64或complex128。如果x是标量,则将其转换为一维数组。参数deg是一个最大阶数列表,形式为[x_deg, y_deg]。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import laguerre as L
使用numpy.array()方法创建相同形状的点坐标数组:
x = np.array([1, 2]) y = np.array([3, 4])
显示数组:
print("Array1...\n",x) print("\nArray2...\n",y)
显示数据类型:
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度:
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状:
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
要生成拉盖尔多项式的伪范德蒙德矩阵,请在Python NumPy中使用`laguerre.lagvander2d()`:
x_deg, y_deg = 2, 3 print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np from numpy.polynomial import laguerre as L # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([1, 2]) y = np.array([3, 4]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the array print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the array print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a pseudo Vandermonde matrix of the Laguerre polynomial, use the laguerre.lagvander2d() in Python Numpy x_deg, y_deg = 2, 3 print("\nResult...\n",L.lagvander2d(x,y, [x_deg, y_deg]))
输出
Array1... [1 2] Array2... [3 4] Array1 datatype... int64 Array2 datatype... int64 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[ 1. -2. -0.5 1. 0. -0. -0. 0. -0.5 1. 0.25 -0.5 ] [ 1. -3. 1. 2.33333333 -1. 3. -1. -2.33333333 -1. 3. -1. -2.33333333]]
广告