在 Python 中生成勒让德多项式和 x、y 点数组的伪范德蒙矩阵
要生成勒让德多项式的伪范德蒙矩阵,请在 Python NumPy 中使用 legendre.legvander2d() 方法。该方法返回伪范德蒙矩阵。返回矩阵的形状为 x.shape + (deg + 1,),其中最后一个索引是相应勒让德多项式的阶数。dtype 将与转换后的 x 相同。
参数 x、y 是点坐标数组,所有数组都具有相同的形状。根据元素是否为复数,dtype 将转换为 float64 或 complex128。标量将转换为一维数组。参数 deg 是 [x_deg, y_deg] 形式的最大阶数列表。
步骤
首先,导入所需的库 -
import numpy as np from numpy.polynomial import legendre as L
使用 numpy.array() 方法创建具有相同形状的点坐标数组 -
x = np.array([1, 2]) y = np.array([3, 4])
显示数组 -
print("Array1...\n",x) print("\nArray2...\n",y)
显示数据类型 -
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度 -
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状 -
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
要生成勒让德多项式的伪范德蒙矩阵,请在 Python NumPy 中使用 legendre.legvander2d() 方法 -
x_deg, y_deg = 2, 3 print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np from numpy.polynomial import legendre as L # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([1, 2]) y = np.array([3, 4]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the legendre.legvander2d() method in Python Numpy x_deg, y_deg = 2, 3 print("\nResult...\n",L.legvander2d(x,y, [x_deg, y_deg]))
输出
Array1... [1 2] Array2... [3 4] Array1 datatype... int64 Array2 datatype... int64 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[ 1. 3. 13. 63. 1. 3. 13. 63. 1. 3. 13. 63. ] [ 1. 4. 23.5 154. 2. 8. 47. 308. 5.5 22. 129.25 847. ]]
广告