如何在基本 R 中将变量添加到模型?


如果我们想在基本 R 中将变量添加到模型,那么可以使用 update 函数。update 函数将通过添加新变量来更新之前的模型,并且该变量可以是单个变量,也可以是两个或更多变量的交互,甚至是现有变量的任何可能变换。

示例

考虑以下数据框架 -

 演示

x1<-rnorm(20)
x2<-rnorm(20,5,1.14)
x3<-rnorm(20,5,0.58)
y1<-rnorm(20,20,2.25)
df1<-data.frame(x1,x2,x3,y1)
df1

输出

      x1       x2          x3    y1
1 0.23523969 7.577512 5.443941 19.76642
2 0.11106994 7.504542 3.897426 19.65692
3 -0.09726361 7.277049 5.335444 19.27655
4 0.26056059 3.933092 4.203294 22.50656
5 -0.78472270 5.375368 5.480062 19.56555
6 -0.14489152 4.310053 5.704146 17.52129
7 -0.96409135 5.145660 4.753728 22.70288
8 -1.04832947 3.954133 4.820469 21.58309
9 -0.65659070 3.994727 4.791794 19.09328
10 0.88016095 6.480780 4.364470 18.50680
11 0.93215306 4.410714 4.664997 14.50948
12 1.49864968 5.172408 5.121840 21.58837
13 1.63126398 4.313327 4.389091 16.06222
14 0.33486400 4.756670 5.012716 16.63648
15 1.20832732 5.942533 6.097934 24.82682
16 1.27126998 6.753667 3.977962 22.59800
17 -0.42438014 4.766934 4.684150 19.70354
18 0.18121480 6.760182 5.444401 25.38505
19 -2.73192870 5.247787 5.305925 20.75227
20 -0.44498078 5.203272 5.877478 19.10085

创建一个线性回归模型,使用 x1 和 x2 预测 y1 -

示例

Model_1<-lm(y1~x1+x2,data=df1)
summary(Model_1)

输出

Call:
lm(formula = y1 ~ x1 + x2, data = df1)
Residuals:
   Min 1   Q       Median 3Q    Max
-4.4836 -1.8695 -0.5435 2.1606 4.8678
Coefficients:
            Estimate Std.  Error t value Pr(>|t|)
(Intercept) 16.2664 2.9395 5.534 3.64e-05 ***
x1          -0.4001 0.6179 -0.647 0.526
x2          0.7027  0.5289 1.329 0.202
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.776 on 17 degrees of freedom
Multiple R-squared: 0.1029, Adjusted R-squared: -0.002624
F-statistic: 0.9751 on 2 and 17 DF, p-value: 0.3973

通过添加 x3 创建模型 -

示例

Model_1<-lm(update(y1~x1+x2,~.+x3,data=df1))
summary(Model_1)

输出

Call:
lm(formula = update(y1 ~ x1 + x2, ~. + x3, data = df1))
Residuals:
   Min       1Q    Median 3Q    Max
-4.4014 -2.0418 -0.6401 2.3419 4.1880
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.5651 5.9847 2.267 0.0376 *
x1          -0.3204 0.6498 -0.493 0.6287
x2          0.6838 0.5418 1.262 0.2251
x3          0.5635 1.0796 0.522 0.6089
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.838 on 16 degrees of freedom
Multiple R-squared: 0.1179, Adjusted R-squared: -0.04746
F-statistic: 0.7131 on 3 and 16 DF, p-value: 0.5584

通过添加 x3 和 x1 与 x2 之间的交互创建模型 -

示例

Model_2<-lm(update(y1~x1+x2,~.+x1*x2+x3,data=df1))
summary(Model_2)

输出

Call:
lm(formula = update(y1 ~ x1 + x2, ~. + x1 * x2 + x3, data = df1))
Residuals:
   Min    1Q     Median    3Q    Max
-3.1970 -1.5739 -0.1827 0.9408 4.5058
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.9974 5.5099 2.540 0.0226 *
x1          -8.9403 4.4024 -2.031 0.0604 .
x2          0.3321 0.5293 0.627 0.5398
x3          0.7861 0.9996 0.786 0.4439
x1:x2       1.6809 0.8505 1.976 0.0668 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.611 on 15 degrees of freedom
Multiple R-squared: 0.3002, Adjusted R-squared: 0.1135
F-statistic: 1.608 on 4 and 15 DF, p-value: 0.2236

更新于:07-Dec-2020

873 次浏览

开启你的 职业生涯

完成课程即可获得认证

开始
广告