如何在 R 中从模型对象中提取模型方程式?


若要提取模型方程模型对象,我们可以使用加美元符号的模型对象名称并调用该函数。例如,如果我们有名称为 Model 的模型对象,那么可以通过使用 Model$call 提取该模型方程。这将直接呈现出用来创建模型的方程式。

示例 1

 实时演示

x1<−rnorm(20,1,0.2)
x2<−rnorm(20,1,0.5)
y1<−rnorm(20,5,1)
Model1<−lm(y1~x1+x2)
summary(Model1)

输出

Call:
lm(formula = y1 ~ x1 + x2)
Residuals:
Min 1Q Median 3Q Max
−1.4419 −0.6894 −0.2993 0.7183 1.7525
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.4266 0.8572 6.331 7.53e−06 ***
x1 −0.1942 0.7662 −0.253 0.803
x2 −0.3554 0.3972 −0.895 0.383
−−−
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9826 on 17 degrees of freedom
Multiple R−squared: 0.05325, Adjusted R−squared: −0.05813
F−statistic: 0.4781 on 2 and 17 DF, p−value: 0.628
Model1$call
lm(formula = y1 ~ x1 + x2)

示例 2

Model2<−lm(y1~x1+x2+x1*x2)
summary(Model2)

输出

Call:
lm(formula = y1 ~ x1 + x2 + x1 * x2)
Residuals:
Min 1Q Median 3Q Max
−1.39281 −0.75354 −0.04841 0.64300 1.55856
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5049 1.4569 3.092 0.00699 **
x1 0.7627 1.4416 0.529 0.60401
x2 1.7243 2.6722 0.645 0.52790
x1:x2 −2.0166 2.5617 −0.787 0.44267
−−−
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9938 on 16 degrees of freedom
Multiple R−squared: 0.08855, Adjusted R−squared: −0.08234
F−statistic: 0.5182 on 3 and 16 DF, p−value: 0.6757
Model2$call
lm(formula = y1 ~ x1 + x2 + x1 * x2)

示例 3

Model3<−lm(y1~x1+x2+x1*x2+x1^2+x2^2)
summary(Model3)

输出

Call:
lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2)
Residuals:
Min 1Q Median 3Q Max
−1.39281 −0.75354 −0.04841 0.64300 1.55856
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5049 1.4569 3.092 0.00699 **
x1 0.7627 1.4416 0.529 0.60401
x2 1.7243 2.6722 0.645 0.52790
x1:x2 −2.0166 2.5617 −0.787 0.44267
−−−
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9938 on 16 degrees of freedom
Multiple R−squared: 0.08855, Adjusted R−squared: −0.08234
F−statistic: 0.5182 on 3 and 16 DF, p−value: 0.6757
Model3$call
lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2)

示例 4

Model4<−lm(y1~x1+x2+x1*x2+x1^2+x2^2+x1^3+x2^3)
summary(Model4)

输出

Call:
lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2 + x1^3 + x2^3)
Residuals:
Min 1Q Median 3Q Max
−1.39281 −0.75354 −0.04841 0.64300 1.55856
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5049 1.4569 3.092 0.00699 **
x1 0.7627 1.4416 0.529 0.60401
x2 1.7243 2.6722 0.645 0.52790
x1:x2 −2.0166 2.5617 −0.787 0.44267
−−−
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9938 on 16 degrees of freedom
Multiple R−squared: 0.08855, Adjusted R−squared: −0.08234
F−statistic: 0.5182 on 3 and 16 DF, p−value: 0.6757
Model4$call
lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2 + x1^3 + x2^3)

示例 5

Model5<−lm(y1~x1+x2+x1*x2+x1^2+x2^2+x1^3+x2^3+exp(x1)+exp(x2))
summary(Model5)

输出

Call:
lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2 + x1^3 + x2^3 +
exp(x1) + exp(x2))
Residuals:
Min 1Q Median 3Q Max
−1.4709 −0.4401 −0.0917 0.6385 1.6444
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5360 1.5679 2.255 0.0407 *
x1 6.4664 3.5377 1.828 0.0890 .
x2 1.1568 2.7512 0.420 0.6805
exp(x1) −1.5881 0.9112 −1.743 0.1033
exp(x2) 0.2382 0.4782 0.498 0.6261
x1:x2 −2.4765 2.5267 −0.980 0.3437
−−−
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9619 on 14 degrees of freedom
Multiple R−squared: 0.2529, Adjusted R−squared: −0.01398
F−statistic: 0.9476 on 5 and 14 DF, p−value: 0.4811
Model5$call
lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2 + x1^3 + x2^3 +
exp(x1) + exp(x2))

更新于:2020-11-07

2000+ 浏览

开启你的职业生涯

完成课程获得认证

开始
广告