如何在R中计算马氏距离?


马氏距离是两个案例和质心之间的相对距离,其中质心可以被认为是多元数据的总体均值。我们可以说质心是均值的多元对应物。如果马氏距离为零,这意味着两个案例完全相同,马氏距离的正值表示两个变量之间的距离很大。在R中,我们可以使用mahalanobis函数来查找马氏距离。

示例1

 在线演示

考虑以下数据帧:

set.seed(981)
x1<−rnorm(20,5,1)
x2<−rnorm(20,5,0.84)
x3<−rnorm(20,10,1.5)
x4<−rnorm(20,10,3.87)
x5<−rnorm(20,1,0.0025)
df1<−data.frame(x1,x2,x3,x4,x5)
df1

输出

      x1       x2       x3       x4       x5
1 4.016851 4.749189 10.166216 9.681625 1.0014171
2 5.208083 4.252389 8.886381 8.407824 0.9973355
3 4.000509 5.680469 10.452573 9.799825 0.9996433
4 4.968047 5.572099 12.813119 10.603569 0.9970847
5 5.253632 4.523665 8.961203 6.135956 0.9974229
6 4.556114 5.963955 7.784837 3.701523 0.9965163
7 4.987874 5.372996 10.104144 12.125932 1.0014389
8 6.164940 4.762497 9.826518 17.002388 0.9998966
9 5.497089 5.006558 11.701747 7.392629 1.0013103
10 4.649598 4.620766 11.955838 7.700963 1.0058710
11 4.947477 4.583403 9.431569 13.005483 0.9963742
12 7.074752 5.093332 9.743409 15.232665 1.0006305
13 4.042776 5.117288 9.603592 12.308203 1.0013562
14 5.364624 3.846084 11.919156 12.546169 1.0034000
15 6.079298 4.270361 10.527513 9.828845 0.9971954
16 4.410121 4.783754 8.844011 15.277243 1.0002428
17 4.213869 5.879465 9.651568 4.334237 1.0018883
18 4.142827 5.619082 9.544201 10.336943 0.9978379
19 3.012995 3.713027 11.487735 13.324214 1.0029497
20 5.481955 3.778913 9.074235 10.391055 0.9982697

查找df1中行的马氏距离:

mahalanobis(df1,colMeans(df1),cov(df1))

输出

[1] 1.192919 3.207677 2.531851 12.073066 3.664532 6.912468 1.766881
[8] 4.880830 3.652825 6.954114 3.152966 8.433015 2.310850 4.239761
[15] 4.013792 4.358375 5.665279 2.711948 9.063510 4.213342

示例2

 在线演示

y1<−rpois(20,1)
y2<−rpois(20,3)
y3<−rpois(20,5)
y4<−rpois(20,8)
y5<−rpois(20,12)
y6<−rpois(20,10)
df2<−data.frame(y1,y2,y3,y4,y5,y6)
df2

输出

y1 y2 y3 y4 y5 y6
1 0 2 4 6 11 10
2 1 6 7 4 9 9
3 1 1 6 13 14 11
4 3 3 9 9 16 9
5 2 3 6 10 9 13
6 0 6 7 13 14 13
7 2 2 7 4 15 7
8 0 2 4 8 14 10
9 2 7 3 7 6 12
10 0 2 6 10 10 9
11 0 5 5 10 8 6
12 2 3 5 7 11 9
13 0 5 3 6 9 7
14 0 2 6 3 13 7
15 1 1 7 10 9 9
16 0 3 3 8 12 11
17 0 3 4 5 13 13
18 1 2 6 14 13 8
19 1 2 4 10 8 7
20 1 5 11 13 12 16

mahalanobis(df2,colMeans(df2),cov(df2))

[1] 2.588021 6.383910 4.101547 8.860628 5.248206 8.669764 6.332766
[8] 3.065049 10.556830 2.882808 6.945220 2.333995 4.171714 5.990775
[15] 5.921976 3.198976 5.971216 5.382210 4.167775 11.226611

示例3

 在线演示

z1<−runif(20,1,2)
z2<−runif(20,1,4)
z3<−runif(20,1,5)
z4<−runif(20,2,5)
z5<−runif(20,5,10)
df3<−data.frame(z1,z2,z3,z4,z5)
df3

输出

      z1       z2       z3       z4       z5
1 1.388613 3.591918 4.950430 3.012227 7.646999
2 1.536406 2.346386 4.009326 3.344235 6.804723
3 1.307832 2.156929 1.548907 3.719957 9.647134
4 1.452674 3.659639 4.067904 2.821600 9.042116
5 1.821635 1.581077 1.848880 2.133112 8.606968
6 1.472712 1.853850 2.757099 4.971375 8.195671
7 1.129696 1.007614 3.454963 4.500837 9.512772
8 1.084507 3.509503 3.972340 2.557956 5.070359
9 1.066166 3.487398 3.235659 2.692450 8.566473
10 1.622298 3.285975 3.214168 2.816199 6.811145
11 1.215978 2.695426 4.459403 3.883969 7.015267
12 1.748907 1.855413 1.100227 3.676822 8.668907
13 1.785502 3.365582 1.089094 2.232694 6.207582
14 1.313907 1.010318 2.040431 3.337156 6.281897
15 1.211392 2.821926 3.427129 4.835524 8.469758
16 1.127482 1.589360 4.105524 4.575452 7.425941
17 1.914011 1.015687 1.900738 2.542681 8.710688
18 1.156077 1.237109 1.667345 4.654083 6.764100
19 1.770988 3.685755 4.417545 4.637382 6.155797
20 1.594745 3.750948 1.394754 4.548843 9.902893
mahalanobis(df3,colMeans(df3),cov(df3))
[1] 3.680650 2.011037 3.520353 4.338257 5.095421 2.698317 5.394089 7.190855
[9] 6.030547 1.608436 1.705612 2.770687 7.343208 4.676116 2.461363 3.186534
[17] 6.758622 6.152332 9.599646 8.777917

更新于:2020年11月7日

609次查看

开启您的 职业生涯

通过完成课程,获得认证

开始
广告