如何组合 R 中的数据框列表?


如果我们有一个数据框列表,并且这些数据框的大小相同,那么我们可能需要合并这些列表,以便可以合并数据框。这可以通过将 mapply 函数与 cbind 结合使用来实现。例如,如果我们有定义为 List1 和 List2 的两个数据框列表,那么我们可以使用命令 − 对其进行合并

mapply(cbind,List1,List2,SIMPLIFY=FALSE).

示例

考虑以下数据框 −

实时演示

> x1<-rnorm(10)
> x2<-rnorm(10)
> df1<-data.frame(x1,x2)
> df1

输出

      x1        x2
1   0.2378371  0.51433808
2   0.0638975 -1.66077353
3   0.3987209  0.68480587
4  -1.1321073  0.29528261
5  -0.5603269  1.14556819
6   2.2072545 -1.20718355
7   0.8196423  0.38380242
8  -2.2394064  0.06741712
9  -0.7356725 -1.46968026
10 -1.4642820 -1.39423679

示例

实时演示

> y1<-rnorm(10)
> y2<-rnorm(10)
> df2<-data.frame(y1,y2)
> df2

输出

      y1         y2
1  2.2307515  0.375538934
2 -1.3539616 -0.169574915
3 -0.1332480 -0.788416414
4  1.3181498  1.887995737
5 -1.4384012  1.261034365
6  0.3725585 -0.493219141
7 -0.7806511 -1.177616450
8 -0.4772392  0.250962895
9 -0.8932982 -0.004567268
10 0.2224190 -0.203232106

示例

> List1<-list(df1,df2)
> List1

输出

[[1]]
         x1     x2
1  0.2378371  0.51433808
2  0.0638975 -1.66077353
3  0.3987209  0.68480587
4 -1.1321073  0.29528261
5 -0.5603269  1.14556819
6  2.2072545 -1.20718355
7  0.8196423  0.38380242
8 -2.2394064  0.06741712
9 -0.7356725 -1.46968026
10 -1.4642820 -1.39423679

[[2]]
y1 y2
1  2.2307515  0.375538934
2 -1.3539616 -0.169574915
3 -0.1332480 -0.788416414
4  1.3181498  1.887995737
5 -1.4384012  1.261034365
6  0.3725585 -0.493219141
7 -0.7806511 -1.177616450
8 -0.4772392  0.250962895
9 -0.8932982 -0.004567268
10 0.2224190 -0.203232106

List2

示例

实时演示

> a1<-rnorm(10)
> a2<-rnorm(10)
> df3<-data.frame(a1,a2)
> df3

输出

        a1      a2
1  1.5711728  0.2861241
2  0.8062374  0.9469154
3  1.1505496 -0.5894829
4  0.9164866 -0.3137043
5 -1.3424446 -1.2921698
6 -0.1499540 -0.8940665
7 -0.1498557 -1.1361156
8  0.9299988  0.7679135
9 -1.7079005 -0.7099908
10 0.8146867  1.3921303

示例

实时演示

> b1<-rnorm(10)
> b2<-rnorm(10)
> df4<-data.frame(b1,b2)
> df4

输出

      b1       b2
1 -1.7113866  1.7014637
2 -0.0202485  1.2428109
3 -0.3892979 -1.5831333
4  0.2127277 -0.4943695
5 -0.4846616  1.0283278
6 -1.4116239 -1.4882983
7 -0.1737286 -0.1101114
8  1.4613389  0.1531942
9 -0.1573986  0.3431330
10 -0.2782074 0.5439397

示例

> List2<-list(df3,df4)
> List2

输出

[[1]]

      a1       a2
1  1.5711728  0.2861241
2  0.8062374  0.9469154
3  1.1505496 -0.5894829
4  0.9164866 -0.3137043
5 -1.3424446 -1.2921698
6 -0.1499540 -0.8940665
7 -0.1498557 -1.1361156
8  0.9299988  0.7679135
9 -1.7079005 -0.7099908
10 0.8146867  1.3921303

[[2]]
b1 b2
1 -1.7113866 1.7014637
2 -0.0202485 1.2428109
3 -0.3892979 -1.5831333
4 0.2127277 -0.4943695
5 -0.4846616 1.0283278
6 -1.4116239 -1.4882983
7 -0.1737286 -0.1101114
8 1.4613389 0.1531942
9 -0.1573986 0.3431330
10 -0.2782074 0.5439397

合并数据框列表 −

示例

> mapply(cbind,List1,List2,SIMPLIFY=FALSE)

输出

[[1]]
x1 x2 a1 a2
1 0.2378371 0.51433808 1.5711728 0.2861241
2 0.0638975 -1.66077353 0.8062374 0.9469154
3 0.3987209 0.68480587 1.1505496 -0.5894829
4 -1.1321073 0.29528261 0.9164866 -0.3137043
5 -0.5603269 1.14556819 -1.3424446 -1.2921698
6 2.2072545 -1.20718355 -0.1499540 -0.8940665
7 0.8196423 0.38380242 -0.1498557 -1.1361156
8 -2.2394064 0.06741712 0.9299988 0.7679135
9 -0.7356725 -1.46968026 -1.7079005 -0.7099908
10 -1.4642820 -1.39423679 0.8146867 1.3921303

[[2]]
y1 y2 b1 b2
1 2.2307515 0.375538934 -1.7113866 1.7014637
2 -1.3539616 -0.169574915 -0.0202485 1.2428109
3 -0.1332480 -0.788416414 -0.3892979 -1.5831333
4 1.3181498 1.887995737 0.2127277 -0.4943695
5 -1.4384012 1.261034365 -0.4846616 1.0283278
6 0.3725585 -0.493219141 -1.4116239 -1.4882983
7 -0.7806511 -1.177616450 -0.1737286 -0.1101114
8 -0.4772392 0.250962895 1.4613389 0.1531942
9 -0.8932982 -0.004567268 -0.1573986 0.3431330
10 0.2224190 -0.203232106 -0.2782074 0.5439397

更新于: 2021 年 1 月 2 日

382 次浏览

启动 职业

完成课程获得认证

开始
广告