如何在R中使用SVM创建用于多个类别的分类模型?
SVM 是一种监督式机器学习算法,可用于分类或回归挑战,但大多数情况下我们将其用于分类。SVM 的分类也可以用于两个或多个类别。在 R 中,我们可以简单地使用 e1071 包的 svm 函数。
示例
考虑 iris 数据 -
str(iris)
输出
'data.frame': 150 obs. of 5 variables: $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
示例
head(iris,20)
输出
Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa 7 4.6 3.4 1.4 0.3 setosa 8 5.0 3.4 1.5 0.2 setosa 9 4.4 2.9 1.4 0.2 setosa 10 4.9 3.1 1.5 0.1 setosa 11 5.4 3.7 1.5 0.2 setosa 12 4.8 3.4 1.6 0.2 setosa 13 4.8 3.0 1.4 0.1 setosa 14 4.3 3.0 1.1 0.1 setosa 15 5.8 4.0 1.2 0.2 setosa 16 5.7 4.4 1.5 0.4 setosa 17 5.4 3.9 1.3 0.4 setosa 18 5.1 3.5 1.4 0.3 setosa 19 5.7 3.8 1.7 0.3 setosa 20 5.1 3.8 1.5 0.3 setosa
加载 e1071 包并创建 svm 模型以预测 Species -
示例
library(e1071) model_1<-svm(iris$Species~.,iris) model_1
输出
Call: svm(formula = iris$Species ~ ., data = iris) Parameters: SVM-Type: C-classification SVM-Kernel: radial cost: 1 Number of Support Vectors: 51
示例
Consider the below data frame: x1<-rnorm(20,1,1.05) x2<-rnorm(20,1,1.05) x3<-rnorm(20,1,1.05) y1<-factor(sample(LETTERS[1:4],20,replace=TRUE)) df1<-data.frame(x1,x2,x3,y1) df1
输出
x1 x2 x3 y1 1 -0.16972931 0.7246676 1.45289129 D 2 0.70684500 2.2078975 1.64698238 D 3 0.75542931 1.7193236 1.31461683 A 4 -0.01975337 0.6848992 0.80361117 D 5 0.86139532 1.3101784 0.35196665 C 6 -0.53543129 -0.1596975 1.06723416 B 7 -0.81283371 2.1653334 1.93182228 A 8 -0.31556364 -0.4410462 1.61967614 A 9 1.52678513 1.9356670 0.04359926 D 10 1.24594463 0.6215577 0.71009713 A 11 1.53888275 0.7491438 2.08191985 D 12 1.19568488 0.6597553 2.40080721 C 13 -0.18610407 0.3972270 2.23357076 D 14 0.56453388 0.5964609 0.94534907 D 15 1.98699347 0.8026872 -0.68205488 D 16 2.00788377 0.9093129 3.24888927 B 17 1.69652350 0.5379913 0.67402105 A 18 1.28221388 1.7807587 2.06529243 B 19 0.17814671 -0.4299207 0.47859582 D 20 2.82514461 1.9284933 1.59796618 D
创建 svm 模型以预测 y1 -
示例
model_2<-svm(df1$y1~.,df1) model_2
输出
Call: svm(formula = df1$y1 ~ ., data = df1) Parameters: SVM-Type: C-classification SVM-Kernel: radial cost: 1 Number of Support Vectors: 20
广告