如何在 R 中找到连续值的总和,每次考虑两个值?
在考虑每次两个值的总和的情况下找到连续值的总和,意味着前两个值的总和,然后是第二个值和第三个值的总和,然后是第三个值和第四个值的总和,然后是第四个值和第五个值的总和,依此类推。为此,我们可以使用 zoo 包中的 rollapply 函数。
加载 zoo 包
ibrary(zoo)
示例
x1<-1:3 x1
输出
[1] 1 2 3
rollapply(x1,2,sum)
[1] 3 5
示例
x2<-1:10 x2
输出
[1] 1 2 3 4 5 6 7 8 9 10
rollapply(x2,2,sum)
[1] 3 5 7 9 11 13 15 17 19
示例
x3<-sample(0:9,50,replace=TRUE) x3
输出
[1] 4 5 0 0 5 4 9 2 1 9 7 2 0 5 3 7 6 6 1 6 3 7 0 4 0 5 4 4 7 3 8 0 3 7 2 2 1 7 [39] 2 2 1 7 2 5 0 9 1 4 3 6
rollapply(x3,2,sum)
[1] 9 5 0 5 9 13 11 3 10 16 9 2 5 8 10 13 12 7 7 9 10 7 4 4 5 [26] 9 8 11 10 11 8 3 10 9 4 3 8 9 4 3 8 9 7 5 9 10 5 7 9
示例
x4<-rnorm(50,1,0.01) x4
输出
[1] 0.9935449 1.0099022 0.9947295 1.0111667 0.9875526 1.0060585 1.0102984 [8] 1.0178206 0.9821054 1.0001210 0.9912770 0.9942123 1.0029275 0.9879245 [15] 0.9831371 0.9928732 0.9996728 1.0029515 0.9805963 0.9834781 1.0017181 [22] 0.9812307 1.0114344 1.0058302 1.0223386 0.9960463 1.0286982 1.0194191 [29] 0.9935153 1.0121636 0.9835419 1.0085877 0.9972304 0.9847358 1.0064163 [36] 0.9812214 1.0008247 1.0232812 1.0093367 0.9978258 1.0023659 0.9984375 [43] 1.0008212 0.9835083 0.9895553 0.9919702 0.9981046 0.9947893 1.0091464 [50] 1.0198059 rollapply(x4,2,sum) [1] 1.994011 1.989994 1.983446 2.008251 1.995898 1.996479 2.005682 2.017292 [9] 2.042351 2.012531 1.995148 2.006504 2.005244 2.000492 2.006613 2.013892 [17] 2.003731 1.988736 1.989027 1.992109 2.009774 1.999826 1.999287 2.018762 [25] 2.001310 2.010054 2.021629 2.001857 1.978824 2.001365 2.017260 2.011697 [33] 1.992223 1.990860 2.020605 1.997287 1.985999 2.001785 1.992045 1.982278 [41] 1.979055 1.981131 1.998802 2.016486 2.017044 2.023902 2.020598 2.030335 [49] 2.038010
示例
x5<-runif(50,2,3) x5
输出
[1] 2.097345 2.471663 2.851550 2.743820 2.118416 2.769698 2.690867 2.246873 [9] 2.784047 2.258938 2.969015 2.477000 2.683269 2.697401 2.731411 2.191636 [17] 2.353095 2.993104 2.835925 2.211106 2.647715 2.436786 2.433908 2.627635 [25] 2.754094 2.043795 2.560132 2.459806 2.017324 2.516130 2.363325 2.793392 [33] 2.794425 2.545284 2.366587 2.881463 2.665224 2.587127 2.121832 2.433428 [41] 2.822085 2.206928 2.904388 2.987217 2.144524 2.711481 2.875176 2.066271 [49] 2.423833 2.333310 rollapply(x5,2,sum) [1] 4.620479 4.987276 4.686020 4.620245 4.799499 4.855526 4.808018 4.911749 [9] 4.858226 4.303694 4.538936 4.570609 4.675954 4.981647 4.831803 4.970590 [17] 5.206684 5.111334 4.596743 4.732819 5.132689 4.747378 4.424908 4.653598 [25] 4.958530 4.760634 4.499325 4.858184 5.354862 5.466659 5.439993 5.067631 [33] 4.900857 5.060006 5.407719 5.684698 5.691366 5.232912 4.579391 5.058905 [41] 5.421667 4.535190 4.892816 5.030818 5.087761 5.523473 4.679963 4.910165 [49] 5.312161
示例
x6<-round(runif(100,2,3),0) x6
输出
[1] 2 3 2 2 2 3 3 3 3 2 2 2 3 2 2 3 3 2 3 3 2 2 2 3 3 2 2 2 2 3 3 2 3 3 3 2 3 [38] 2 2 3 2 3 2 2 2 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 2 2 3 3 3 3 2 3 3 3 2 3 2 2 [75] 2 3 2 2 2 3 3 3 3 3 2 2 3 2 3 2 2 3 2 3 2 3 3 2 2 2 rollapply(x6,2,sum) [1] 5 5 5 4 5 5 5 5 4 5 6 6 5 5 6 6 6 5 4 5 6 5 4 5 6 5 4 4 4 5 6 6 6 5 4 5 6 5 [39] 5 5 5 5 5 6 5 4 5 6 5 5 5 4 4 4 5 5 4 5 6 5 5 5 5 5 5 5 4 5 6 5 4 5 5 4 5 5 [77] 5 5 4 5 5 5 6 5 5 6 5 5 5 5 6 5 4 5 5 4 5 6 6
示例
x7<-round(rexp(100,3.5),0) x7
输出
[1] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 [38] 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 [75] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rollapply(x7,2,sum) [1] 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 3 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 [39] 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 [77] 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
示例
x8<-round(rnorm(100,5,2),0) x8
输出
[1] 6 5 3 7 7 6 8 7 4 10 8 8 2 3 3 7 9 5 6 6 4 3 5 7 4 [26] 6 4 11 5 6 3 9 5 5 5 7 3 4 3 4 3 4 3 3 6 3 3 4 6 2 [51] 4 3 5 7 6 12 3 5 3 8 6 1 5 7 2 4 3 3 3 4 9 7 1 8 7 [76] 7 5 4 8 8 7 4 7 6 6 8 9 8 7 4 5 6 4 6 5 2 7 4 5 3 rollapply(x8,2,sum) [1] 11 8 10 14 13 14 15 11 14 18 16 10 5 6 10 16 14 11 12 10 7 8 12 11 10 [26] 10 15 16 11 9 12 14 10 10 12 10 7 7 7 7 7 7 6 9 9 6 7 10 8 6 [51] 7 8 12 13 18 15 8 8 11 14 7 6 12 9 6 7 6 6 7 13 16 8 9 15 14 [76] 12 9 12 16 15 11 11 13 12 14 17 17 15 11 9 11 10 10 11 7 9 11 9 8
示例
x9<-sample(51:99,100,replace=TRUE) x9
输出
[1] 81 80 78 97 58 73 74 76 67 72 87 70 94 61 63 93 96 63 63 90 76 56 98 84 95 [26] 90 95 58 87 56 95 65 87 99 56 86 72 91 89 79 98 59 66 81 88 59 52 81 54 69 [51] 86 63 64 67 53 71 69 61 67 85 99 81 88 87 80 54 80 93 95 74 87 95 54 53 62 [76] 73 56 75 83 57 72 93 75 61 60 66 76 96 66 65 77 71 73 68 92 91 63 76 70 64 rollapply(x9,2,sum) [1] 115 116 156 190 169 164 165 159 160 177 186 180 183 175 156 126 140 140 109 [20] 135 168 147 148 141 134 175 149 124 165 157 136 151 125 124 171 153 129 125 [39] 127 168 154 123 126 143 164 182 176 174 184 179 172 148 143 138 126 130 142 [58] 147 157 169 137 138 148 117 117 142 136 133 131 157 198 150 127 155 167 179 [77] 171 173 171 141 160 167 166 149 140 184 162 128 115 128 160 171 155 151 145 [96] 156 151 108 143
示例
x10<-sample(101:999,100,replace=TRUE) x10
输出
[1] 583 340 524 234 269 932 926 919 195 968 192 736 964 529 185 286 127 530 [19] 170 452 941 676 393 352 257 845 958 436 198 581 509 724 857 311 252 530 [37] 384 501 880 494 553 979 195 747 877 839 233 162 877 510 161 784 810 904 [55] 967 507 837 832 505 896 371 385 563 579 112 545 800 967 999 124 505 710 [73] 357 927 614 684 272 726 484 276 693 378 252 329 171 532 519 187 177 943 [91] 821 186 871 881 386 644 113 406 551 619 rollapply(x10,2,sum) [1] 656 1358 1359 724 1013 1727 1303 1342 1294 622 1142 1458 1045 823 475 [16] 902 979 629 911 817 1075 1120 688 507 384 827 970 1113 1240 758 [31] 1296 1384 624 741 956 743 942 1153 1436 1244 1297 1663 1579 1131 720 [46] 1345 1109 341 252 1028 1706 1470 805 461 1194 1169 1004 905 1018 1103 [61] 686 724 1201 1349 1150 958 969 841 892 1124 731 646 1275 1699 1462 [76] 1028 409 661 669 983 1089 361 404 624 1291 1358 1227 1428 699 229 [91] 893 1207 1270 1139 1028 1426 1470 1130 642
广告