如何根据因子列的分组选择R数据框的前几行?
我们使用 head 函数查看 R 数据框中的一些顶部值,但它显示了整个数据框的顶部值,而没有考虑因子列的分组。因此,如果某个特定组中有大量值,则单独使用 head 函数似乎没有帮助,我们必须使用一些方法来提取每个组的顶部值。这可以通过使用 by 函数结合方括号和 head 函数来实现。
示例
data(iris) str(iris) 'data.frame': 150 obs. of 5 variables: $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... Top5_Based_on_Species<-by(iris,iris["Species"],head,n=5) Top5_Based_on_Species Species: setosa
输出
Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa ------------------------------------------------------------ Species: versicolor Sepal.Length Sepal.Width Petal.Length Petal.Width Species 51 7.0 3.2 4.7 1.4 versicolor 52 6.4 3.2 4.5 1.5 versicolor 53 6.9 3.1 4.9 1.5 versicolor 54 5.5 2.3 4.0 1.3 versicolor 55 6.5 2.8 4.6 1.5 versicolor ------------------------------------------------------------ Species: virginica Sepal.Length Sepal.Width Petal.Length Petal.Width Species 101 6.3 3.3 6.0 2.5 virginica 102 5.8 2.7 5.1 1.9 virginica 103 7.1 3.0 5.9 2.1 virginica 104 6.3 2.9 5.6 1.8 virginica 105 6.5 3.0 5.8 2.2 virginica
示例
data(ToothGrowth) str(ToothGrowth) 'data.frame': 60 obs. of 3 variables: $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ... $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ... $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ... Top10_Based_on_Supp<-by(ToothGrowth,ToothGrowth["supp"],head,n=10) Top10_Based_on_Supp supp: OJ
输出
len supp dose 31 15.2 OJ 0.5 32 21.5 OJ 0.5 33 17.6 OJ 0.5 34 9.7 OJ 0.5 35 14.5 OJ 0.5 36 10.0 OJ 0.5 37 8.2 OJ 0.5 38 9.4 OJ 0.5 39 16.5 OJ 0.5 40 9.7 OJ 0.5 ------------------------------------------------------------ supp: VC len supp dose 1 4.2 VC 0.5 2 11.5 VC 0.5 3 7.3 VC 0.5 4 5.8 VC 0.5 5 6.4 VC 0.5 6 10.0 VC 0.5 7 11.2 VC 0.5 8 11.2 VC 0.5 9 5.2 VC 0.5 10 7.0 VC 0.5
示例
data(CO2) str(CO2) Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame': 84 obs. of 5 variables: $ Plant : Ord.factor w/ 12 levels "Qn1"<"Qn2"<"Qn3"<..: 1 1 1 1 1 1 1 2 2 2 ... $ Type : Factor w/ 2 levels "Quebec","Mississippi": 1 1 1 1 1 1 1 1 1 1 ... $ Treatment: Factor w/ 2 levels "nonchilled","chilled": 1 1 1 1 1 1 1 1 1 1 ... $ conc : num 95 175 250 350 500 675 1000 95 175 250 ... $ uptake : num 16 30.4 34.8 37.2 35.3 39.2 39.7 13.6 27.3 37.1 ... - attr(*, "formula")=Class 'formula' language uptake ~ conc | Plant .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> - attr(*, "outer")=Class 'formula' language ~Treatment * Type .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> - attr(*, "labels")=List of 2 ..$ x: chr "Ambient carbon dioxide concentration" ..$ y: chr "CO2 uptake rate" - attr(*, "units")=List of 2 ..$ x: chr "(uL/L)" ..$ y: chr "(umol/m^2 s)" Top5_Based_on_Treatment<-by(CO2,CO2["Treatment"],head,n=5) Top5_Based_on_Treatment
输出
Treatment: nonchilled Plant Type Treatment conc uptake 1 Qn1 Quebec nonchilled 95 16.0 2 Qn1 Quebec nonchilled 175 30.4 3 Qn1 Quebec nonchilled 250 34.8 4 Qn1 Quebec nonchilled 350 37.2 5 Qn1 Quebec nonchilled 500 35.3 ------------------------------------------------------------ Treatment: chilled Plant Type Treatment conc uptake 22 Qc1 Quebec chilled 95 14.2 23 Qc1 Quebec chilled 175 24.1 24 Qc1 Quebec chilled 250 30.3 25 Qc1 Quebec chilled 350 34.6 26 Qc1 Quebec chilled 500 32.5
广告
数据结构
网络
关系数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP