雅可比数和雅可比-卢卡斯数


雅可比数

卢卡斯序列 𝑈𝑛(𝑃,𝑄) 其中 P = 1 且 Q = -2 被称为雅可比数。雅可比数的递推关系为:

$$\mathrm{𝐽_𝑛 = 0\: 𝑓𝑜𝑟 \: 𝑛 = 0}$$

$$\mathrm{𝐽_𝑛 = 1\: 𝑓𝑜𝑟 \: 𝑛 = 1}$$

$$\mathrm{𝐽_𝑛 = 𝐽_𝑛−1 + 2𝐽_{𝑛−2}\: 𝑓𝑜𝑟 \: 𝑛 > 1}$$

以下是雅可比数:

0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, ….

雅可比-卢卡斯数

互补卢卡斯序列 $\mathrm{𝑉_𝑛(𝑃,𝑄)}$ 其中 P = 1 且 Q = -2 被称为雅可比-卢卡斯数。雅可比-卢卡斯数的递推关系为:

$\mathrm{𝐽_𝑛}$ = 2 𝑓𝑜𝑟 𝑛 = 0

$\mathrm{𝐽_𝑛}$ = 1 𝑓𝑜𝑟 𝑛 = 1

$\mathrm{𝐽_𝑛 = 𝐽_{𝑛−1} + 2𝐽_{𝑛−2}\: 𝑓𝑜𝑟 \: 𝑛 > 1}$

以下是雅可比-卢卡斯数:

2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, ….

问题陈述

给定一个整数 N。找到第 N 个雅可比数和雅可比-卢卡斯数。

示例 1

Input: 2
Output:
Jacobsthal = 1
Jacobsthal-Lucas = 5

解释

雅可比数 - 0, 1, 1

雅可比-卢卡斯数 - 2, 1, 5

示例 2

Input: 12
Output:
Jacobsthal = 1365
Jacobsthal-Lucas = 4097

解释

雅可比数 - 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365

雅可比-卢卡斯数 - 2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097

方法 1:递归方法

使用雅可比数和雅可比-卢卡斯数的递推关系,我们可以形成一个递归关系,如 $\mathrm{𝐽_𝑛 = 𝐽_{𝑛−1} + 2𝐽_{𝑛−2}}$

伪代码

procedure jacobsthalNumber (n)
   if n == 0
      ans = 0
   end if
   if n == 1
      ans = 1
   end if
   ans = jacobsthalNumber(n-1) + 2*jacobsthalNumber(n-2)
end procedure
procedure jacobsthalLucasNumber (n)
   if n == 0
      ans = 2
   end if
   if n == 1
      ans = 1
   end if
   ans = jacobsthalLucasNumber(n-1) + 2*jacobsthalLucasNumber(n-2)
end procedure

示例

在下面的程序中,我们为雅可比数和雅可比-卢卡斯数创建了单独的函数,并使用它们的递推关系来递归计算第 n 个数。

#include<bits/stdc++.h>
using namespace std;
// Recursive function for finding the nth Jacobsthal Number
int jacobsthalNumber (int n){

   // Defining the first case in recurrence relation
   if (n == 0) {
      return 0;
   }
   
   // Defining the second case in recurrence relation
   if (n == 1) {
      return 1;
   }
   
   // Defining the third case in recurrence relation when n>1
   return jacobsthalNumber(n-1) + 2*jacobsthalNumber(n-2);
}

// Recursive function for finding the nth Jacobsthal-Lucas Number
int jacobsthalLucasNumber (int n){

   // Defining the first case in recurrence relation
   if (n == 0) {
      return 2;
   }
   
   // Defining the second case in recurrence relation
   if (n == 1) {
      return 1;
   }
   
   // Defining the third case in recurrence relation when n>1
   return jacobsthalLucasNumber(n-1) + 2*jacobsthalLucasNumber(n-2);
}
int main(){
   int N = 7;
   cout << N << "th Jacobsthal number = " << jacobsthalNumber(N) << endl;
   cout << N << "th Jacobsthal-Lucas number = " << jacobsthalLucasNumber(N) << endl;
}

输出

7th Jacobsthal number = 43
7th Jacobsthal-Lucas number = 127

时间复杂度 - O(2n),因为形成了递归树。

空间复杂度 - O(1) + 递归栈空间。

方法 2:记忆化

记忆化有助于降低时间复杂度,因为它有助于仅计算一次输入的函数,方法是存储结果。

伪代码 -

Initialize two arrays j[N+1] and jL[N+1] with -1
procedure jacobsthalNumber (n)
   if n == 0
      ans = 0
   end if
   if n == 1
      ans = 1
   end if
   if j[n] == -1
      j[n] = jacobsthalNumber(n-1) + 2*jacobsthalNumber(n-2)
   end if
   ans = j[n]
end procedure
procedure jacobsthalLucasNumber (n)
   if n == 0
      ans = 2
   end if
   if n == 1
      ans = 1
   end if
   if jL[n] == -1
      jL[n] = jacobsthalLucasNumber(n-1) + 2*jacobsthalLucasNumber(n-2)
   end if
   ans = jL[n]
end procedure

示例

在此程序中,我们使用记忆化来降低先前方法的时间复杂度。

#include<bits/stdc++.h>
using namespace std;
int N = 12;
// initializing memoization table
vector<int> j(N+1, -1), jL(N+1, -1);

// Memoized function for finding the nth Jacobsthal Number
int jacobsthalNumber (int n){

   // Defining the first case in recurrence relation
   if (n == 0) {
      return 0;
   }
   
   // Defining the second case in recurrence relation
   if (n == 1) {
      return 1;
   }
   
   // Checking if nth jacobsthal number is already calculated or not
   if(j[n] != -1) {
      return j[n];
   } else {
      return j[n] = jacobsthalNumber(n-1) + 2*jacobsthalNumber(n-2);
   }
}

// Memoized function for finding the nth Jacobsthal-Lucas Number
int jacobsthalLucasNumber (int n){

   // Defining the first case in recurrence relation
   if (n == 0) {
      return 2;
   }
   
   // Defining the second case in recurrence relation
   if (n == 1) {
      return 1;
   }
   
   // Checking if nth jacobsthal-lucas number is already calculated or not
   if(jL[n] != -1) {
      return jL[n];
   } else {
      return jL[n] = jacobsthalLucasNumber(n-1) + 2*jacobsthalLucasNumber(n-2);
   }
}

// Driver code
int main(){
   cout << N << "th Jacobsthal number = " << jacobsthalNumber(N) << endl;
   cout << N << "th Jacobsthal-Lucas number = " << jacobsthalLucasNumber(N) << endl;
}

输出

12th Jacobsthal number = 1365
12th Jacobsthal-Lucas number = 4097

时间复杂度 - O(N),因为不会计算重复的递归调用。

空间复杂度 - O(N)(因为用于记忆化表的空间)+ 递归栈空间。

方法 3:动态规划

伪代码 -

procedure jacobsthal (n)
   initialize dp table jacobsthalDP[n+1]
   jacobsthalDP[0] = 0
   jacobsthalDP[1] = 1
   for i = 2 to n
      jacobsthalDP[i] = jacobsthalDP[i-1] + 2*jacobsthalDP[i-2]
   end for
   ans = jacobsthalDP[n]
end procedure
procedure jacobsthalLucas (n)
   initialize dp table jacobsthalLucasDP[n+1]
   jacobsthalLucasDP[0] = 2
   jacobsthalLucasDP[1] = 1
   for i = 2 to n
      jacobsthalLucasDP[i] = jacobsthalLucasDP[i-1] + 2*jacobsthalLucasDP[i-2]
   end for
   ans = jacobsthalLucasDP[n]
end procedure

示例

在下面的程序中,使用了动态规划方法。

#include<bits/stdc++.h>
using namespace std;

// Function for finding the nth Jacobsthal Number
int jacobsthalNumber (int n){
   int jacobsthalDP[n+1];
   
   // Defining base condition
   jacobsthalDP[0] = 0;
   jacobsthalDP[1] = 1;
   for (int i = 2 ; i <= n ; i++){
      jacobsthalDP[i] = jacobsthalDP[i-1] + 2*jacobsthalDP[i-2];
   }
   return jacobsthalDP[n];
}

// Function for finding the nth Jacobsthal-Lucas Number
int jacobsthalLucasNumber (int n){
   int jacobsthalLucasDP[n+1];
   
   // Defining base condition
   jacobsthalLucasDP[0] = 2;
   jacobsthalLucasDP[1] = 1;
   for (int i = 2 ; i <= n ; i++){
      jacobsthalLucasDP[i] = jacobsthalLucasDP[i-1] + 2*jacobsthalLucasDP[i-2];
   }
   return jacobsthalLucasDP[n];
}
int main(){
   int N = 5;
   cout << N << "th Jacobsthal number = " << jacobsthalNumber(N) << endl;
   cout << N << "th Jacobsthal-Lucas number = " << jacobsthalLucasNumber(N) << endl;
}

输出

5th Jacobsthal number = 11
5th Jacobsthal-Lucas number = 31

时间复杂度 - O(n),因为每个函数中仅执行一次 for 循环

空间复杂度 - dp 表的 O(n)。在此方法中,不使用额外的栈递归空间。

结论

总之,雅可比数是从卢卡斯序列中获得的,而雅可比-卢卡斯数是从互补卢卡斯序列中获得的。为了找到第 n 个雅可比数和雅可比-卢卡斯数,我们可以从递归方法转向具有最小时间和空间复杂度的动态规划方法。

更新于: 2023年9月28日

210 次查看

开启您的 职业生涯

通过完成课程获得认证

开始学习
广告