雅可比数和雅可比-卢卡斯数
雅可比数
卢卡斯序列 𝑈𝑛(𝑃,𝑄) 其中 P = 1 且 Q = -2 被称为雅可比数。雅可比数的递推关系为:
$$\mathrm{𝐽_𝑛 = 0\: 𝑓𝑜𝑟 \: 𝑛 = 0}$$
$$\mathrm{𝐽_𝑛 = 1\: 𝑓𝑜𝑟 \: 𝑛 = 1}$$
$$\mathrm{𝐽_𝑛 = 𝐽_𝑛−1 + 2𝐽_{𝑛−2}\: 𝑓𝑜𝑟 \: 𝑛 > 1}$$
以下是雅可比数:
0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, ….
雅可比-卢卡斯数
互补卢卡斯序列 $\mathrm{𝑉_𝑛(𝑃,𝑄)}$ 其中 P = 1 且 Q = -2 被称为雅可比-卢卡斯数。雅可比-卢卡斯数的递推关系为:
$\mathrm{𝐽_𝑛}$ = 2 𝑓𝑜𝑟 𝑛 = 0
$\mathrm{𝐽_𝑛}$ = 1 𝑓𝑜𝑟 𝑛 = 1
$\mathrm{𝐽_𝑛 = 𝐽_{𝑛−1} + 2𝐽_{𝑛−2}\: 𝑓𝑜𝑟 \: 𝑛 > 1}$
以下是雅可比-卢卡斯数:
2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, ….
问题陈述
给定一个整数 N。找到第 N 个雅可比数和雅可比-卢卡斯数。
示例 1
Input: 2
Output: Jacobsthal = 1 Jacobsthal-Lucas = 5
解释
雅可比数 - 0, 1, 1
雅可比-卢卡斯数 - 2, 1, 5
示例 2
Input: 12
Output: Jacobsthal = 1365 Jacobsthal-Lucas = 4097
解释
雅可比数 - 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365
雅可比-卢卡斯数 - 2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097
方法 1:递归方法
使用雅可比数和雅可比-卢卡斯数的递推关系,我们可以形成一个递归关系,如 $\mathrm{𝐽_𝑛 = 𝐽_{𝑛−1} + 2𝐽_{𝑛−2}}$
伪代码
procedure jacobsthalNumber (n) if n == 0 ans = 0 end if if n == 1 ans = 1 end if ans = jacobsthalNumber(n-1) + 2*jacobsthalNumber(n-2) end procedure procedure jacobsthalLucasNumber (n) if n == 0 ans = 2 end if if n == 1 ans = 1 end if ans = jacobsthalLucasNumber(n-1) + 2*jacobsthalLucasNumber(n-2) end procedure
示例
在下面的程序中,我们为雅可比数和雅可比-卢卡斯数创建了单独的函数,并使用它们的递推关系来递归计算第 n 个数。
#include<bits/stdc++.h> using namespace std; // Recursive function for finding the nth Jacobsthal Number int jacobsthalNumber (int n){ // Defining the first case in recurrence relation if (n == 0) { return 0; } // Defining the second case in recurrence relation if (n == 1) { return 1; } // Defining the third case in recurrence relation when n>1 return jacobsthalNumber(n-1) + 2*jacobsthalNumber(n-2); } // Recursive function for finding the nth Jacobsthal-Lucas Number int jacobsthalLucasNumber (int n){ // Defining the first case in recurrence relation if (n == 0) { return 2; } // Defining the second case in recurrence relation if (n == 1) { return 1; } // Defining the third case in recurrence relation when n>1 return jacobsthalLucasNumber(n-1) + 2*jacobsthalLucasNumber(n-2); } int main(){ int N = 7; cout << N << "th Jacobsthal number = " << jacobsthalNumber(N) << endl; cout << N << "th Jacobsthal-Lucas number = " << jacobsthalLucasNumber(N) << endl; }
输出
7th Jacobsthal number = 43 7th Jacobsthal-Lucas number = 127
时间复杂度 - O(2n),因为形成了递归树。
空间复杂度 - O(1) + 递归栈空间。
方法 2:记忆化
记忆化有助于降低时间复杂度,因为它有助于仅计算一次输入的函数,方法是存储结果。
伪代码 -
Initialize two arrays j[N+1] and jL[N+1] with -1 procedure jacobsthalNumber (n) if n == 0 ans = 0 end if if n == 1 ans = 1 end if if j[n] == -1 j[n] = jacobsthalNumber(n-1) + 2*jacobsthalNumber(n-2) end if ans = j[n] end procedure procedure jacobsthalLucasNumber (n) if n == 0 ans = 2 end if if n == 1 ans = 1 end if if jL[n] == -1 jL[n] = jacobsthalLucasNumber(n-1) + 2*jacobsthalLucasNumber(n-2) end if ans = jL[n] end procedure
示例
在此程序中,我们使用记忆化来降低先前方法的时间复杂度。
#include<bits/stdc++.h> using namespace std; int N = 12; // initializing memoization table vector<int> j(N+1, -1), jL(N+1, -1); // Memoized function for finding the nth Jacobsthal Number int jacobsthalNumber (int n){ // Defining the first case in recurrence relation if (n == 0) { return 0; } // Defining the second case in recurrence relation if (n == 1) { return 1; } // Checking if nth jacobsthal number is already calculated or not if(j[n] != -1) { return j[n]; } else { return j[n] = jacobsthalNumber(n-1) + 2*jacobsthalNumber(n-2); } } // Memoized function for finding the nth Jacobsthal-Lucas Number int jacobsthalLucasNumber (int n){ // Defining the first case in recurrence relation if (n == 0) { return 2; } // Defining the second case in recurrence relation if (n == 1) { return 1; } // Checking if nth jacobsthal-lucas number is already calculated or not if(jL[n] != -1) { return jL[n]; } else { return jL[n] = jacobsthalLucasNumber(n-1) + 2*jacobsthalLucasNumber(n-2); } } // Driver code int main(){ cout << N << "th Jacobsthal number = " << jacobsthalNumber(N) << endl; cout << N << "th Jacobsthal-Lucas number = " << jacobsthalLucasNumber(N) << endl; }
输出
12th Jacobsthal number = 1365 12th Jacobsthal-Lucas number = 4097
时间复杂度 - O(N),因为不会计算重复的递归调用。
空间复杂度 - O(N)(因为用于记忆化表的空间)+ 递归栈空间。
方法 3:动态规划
伪代码 -
procedure jacobsthal (n) initialize dp table jacobsthalDP[n+1] jacobsthalDP[0] = 0 jacobsthalDP[1] = 1 for i = 2 to n jacobsthalDP[i] = jacobsthalDP[i-1] + 2*jacobsthalDP[i-2] end for ans = jacobsthalDP[n] end procedure procedure jacobsthalLucas (n) initialize dp table jacobsthalLucasDP[n+1] jacobsthalLucasDP[0] = 2 jacobsthalLucasDP[1] = 1 for i = 2 to n jacobsthalLucasDP[i] = jacobsthalLucasDP[i-1] + 2*jacobsthalLucasDP[i-2] end for ans = jacobsthalLucasDP[n] end procedure
示例
在下面的程序中,使用了动态规划方法。
#include<bits/stdc++.h> using namespace std; // Function for finding the nth Jacobsthal Number int jacobsthalNumber (int n){ int jacobsthalDP[n+1]; // Defining base condition jacobsthalDP[0] = 0; jacobsthalDP[1] = 1; for (int i = 2 ; i <= n ; i++){ jacobsthalDP[i] = jacobsthalDP[i-1] + 2*jacobsthalDP[i-2]; } return jacobsthalDP[n]; } // Function for finding the nth Jacobsthal-Lucas Number int jacobsthalLucasNumber (int n){ int jacobsthalLucasDP[n+1]; // Defining base condition jacobsthalLucasDP[0] = 2; jacobsthalLucasDP[1] = 1; for (int i = 2 ; i <= n ; i++){ jacobsthalLucasDP[i] = jacobsthalLucasDP[i-1] + 2*jacobsthalLucasDP[i-2]; } return jacobsthalLucasDP[n]; } int main(){ int N = 5; cout << N << "th Jacobsthal number = " << jacobsthalNumber(N) << endl; cout << N << "th Jacobsthal-Lucas number = " << jacobsthalLucasNumber(N) << endl; }
输出
5th Jacobsthal number = 11 5th Jacobsthal-Lucas number = 31
时间复杂度 - O(n),因为每个函数中仅执行一次 for 循环
空间复杂度 - dp 表的 O(n)。在此方法中,不使用额外的栈递归空间。
结论
总之,雅可比数是从卢卡斯序列中获得的,而雅可比-卢卡斯数是从互补卢卡斯序列中获得的。为了找到第 n 个雅可比数和雅可比-卢卡斯数,我们可以从递归方法转向具有最小时间和空间复杂度的动态规划方法。