在NumPy中屏蔽包含沿轴0被屏蔽值的二维数组的行和/或列
要屏蔽包含屏蔽值的二维数组的行和/或列,请在NumPy中使用**np.ma.mask_rowcols()**方法。该函数返回输入数组的修改版本,根据axis参数的值进行屏蔽。
屏蔽包含屏蔽值的二维数组的整行和/或整列。屏蔽行为使用axis参数选择:
- 如果axis为None,则屏蔽行和列。
- 如果axis为0,则仅屏蔽行。
- 如果axis为1或-1,则仅屏蔽列。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建一个包含整数元素的数组:
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("
Array Dimensions...
",arr.ndim)
创建一个掩码数组,并将其中一些标记为无效:
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状:
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素个数:
print("
Elements in the Masked Array...
",maskArr.size)
要屏蔽包含屏蔽值的二维数组的行和/或列,请使用np.ma.mask_rowcols():
print("
Result...
",np.ma.mask_rowcols(maskArr, axis = 0))
示例
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 0, 0, 0], [0, 1, 0], [0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To mask rows and/or columns of a 2D array that contain masked values, use the np.ma.mask_rowcols() method in Numpy # The axis is set using the axis parameter print("
Result...
",np.ma.mask_rowcols(maskArr, axis = 0))
输出
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [93 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Result... [[-- -- --] [93 33 39] [-- -- --] [-- -- --]]
广告