最大二分匹配


将图中的一组边选取出来,使得该组中的任意两条边不再同享一个端点。最大匹配是指匹配的边数最多。

找到最大匹配后,我们无法再加入另一条边。如果向最大匹配图中添加一条边,它将不再是一个匹配。对于二分图,可能存在多于一个的最大匹配。

输入和输出

Input:
The adjacency matrix.
0 1 1 0 0 0
1 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

Output:
Maximum number of applicants matching for job: 5

算法

bipartiteMatch(u, visited, assign)

输入: 起始节点、用于跟踪的已访问列表、将列表分配给将节点分配给另一个节点。

输出 − 在可以为顶点 u 匹配时返回 true。

Begin
   for all vertex v, which are adjacent with u, do
      if v is not visited, then
         mark v as visited
         if v is not assigned, or bipartiteMatch(assign[v], visited, assign) is true, then
            assign[v] := u
            return true
   done
   return false
End

maxMatch(graph)

输入 − 给定的图。

输出 − 匹配的最大数。

Begin
   initially no vertex is assigned
   count := 0
   for all applicant u in M, do
      make all node as unvisited
      if bipartiteMatch(u, visited, assign), then
         increase count by 1
   done
End

示例

#include <iostream>
#define M 6
#define N 6
using namespace std;

bool bipartiteGraph[M][N] = {    //A graph with M applicant and N jobs
   {0, 1, 1, 0, 0, 0},
   {1, 0, 0, 1, 0, 0},
   {0, 0, 1, 0, 0, 0},
   {0, 0, 1, 1, 0, 0},
   {0, 0, 0, 0, 0, 0},
   {0, 0, 0, 0, 0, 1}
};

bool bipartiteMatch(int u, bool visited[], int assign[]) {
   for (int v = 0; v < N; v++) {    //for all jobs 0 to N-1
      if (bipartiteGraph[u][v] && !visited[v]) {    //when job v is not visited and u is interested
         visited[v] = true;    //mark as job v is visited
         //when v is not assigned or previously assigned
         if (assign[v] < 0 || bipartiteMatch(assign[v], visited, assign)) {
            assign[v] = u;    //assign job v to applicant u
            return true;
         }
      }
   }
   return false;
}

int maxMatch() {
   int assign[N];    //an array to track which job is assigned to which applicant
   for(int i = 0; i<N; i++)
      assign[i] = -1;    //initially set all jobs are available
   int jobCount = 0;

   for (int u = 0; u < M; u++) {    //for all applicants
      bool visited[N];
      for(int i = 0; i<N; i++)
         visited[i] = false;    //initially no jobs are visited
      if (bipartiteMatch(u, visited, assign))    //when u get a job
         jobCount++;
   }
   return jobCount;
}

int main() {
   cout << "Maximum number of applicants matching for job: " << maxMatch();
}

输出

Maximum number of applicants matching for job: 5

更新于: 2020 年 6 月 16 日

8K+ 浏览量

开启您的职业生涯

完成课程并获得认证

开始学习
广告