通过将前缀加1来最小化使字符串回文的运算次数
在这个问题中,我们将计算通过增加给定字符串的前缀字符所需的运算次数。
我们将使用字符差异来计算使字符串回文所需的最小运算次数。
问题陈述
我们得到一个包含数字字符的字符串nums。我们需要计算将字符串转换为回文所需的最小运算次数。
在一个操作中,我们可以选择字符串的任何前缀并将所有前缀字符加1。
示例
输入
nums = "22434"
输出
2
解释
首先,我们可以选择前2个字符并递增所有字符。因此,字符串变为33434。
之后,我们可以选择'3'前缀,字符串变为43434,这是一个回文串。
输入
nums = '151'
输出
0
解释 - 字符串已经是回文串。所以它输出0。
输入
nums = "32102"
输出
-1
解释 - 不可能通过递增前缀值将字符串转换为回文串。
方法1
如果字符串满足以下两个条件,我们可以根据问题陈述使字符串回文。
将字符串分成两等份后,第一部分的数字应该小于第二部分。
在左半部分,起始字符应该大于结束字符,因为我们需要选择任何前缀并将每个字符加1。
算法
步骤1 − 将q初始化为len - 1,将p初始化为0,因为我们将其用作索引指针。将maxOps初始化为最大整数值以存储最小操作数,并将'curr'初始化为0以存储最大差值。
步骤2 − 开始遍历字符串,直到q > p。
步骤3 − 如果索引q处的字符小于索引p处的字符,则返回-1,因为将字符串转换为回文是不可能的。
步骤4 − 将索引q和p处的字符的ASCII值之差存储到'diff'变量中。
步骤5 − 将'curr'和'diff'的最大值存储在'curr'变量中。
步骤6 − 如果'maxOps'值小于'diff',则返回-1。
步骤7 − 使用'diff'值更新'maxOps'。
步骤8 − 将p加1,将q减1。
步骤9 − 返回'curr'值。
示例
#include <stdio.h>
#include <string.h>
#include <limits.h>
int makePalindrome(char alpha[], int len) {
int q = len - 1;
int p = 0;
int maxOpes = INT_MAX;
int curr = 0;
// Traverse from both ends
while (q > p) {
// It is not possible to make the string palindromic
if (alpha[q] < alpha[p]) {
return -1;
}
// Get character difference
int diff = alpha[q] - alpha[p];
// Get the maximum current difference
curr = (curr > diff) ? curr : diff;
// At the center side difference should be less than the characters at the end
if (maxOpes < diff) {
return -1;
}
maxOpes = diff;
p++;
q--;
}
return curr;
}
int main() {
char nums[] = "22434";
int len = strlen(nums);
printf("The number of minimum operations required to make the string palindromic is %d\n", makePalindrome(nums, len));
return 0;
}
输出
The number of minimum operations required to make the string palindromic is 2
#include <bits/stdc++.h>
using namespace std;
int makePalindrome(string alpha, int len) {
int q = len - 1;
int p = 0;
int maxOpes = INT_MAX;
int curr = 0;
// Travere from both ends
while (q > p) {
// It is not possible to make string palindromic
if (alpha[q] < alpha[p]) {
return -1;
}
// Get character difference
int diff = alpha[q] - alpha[p];
// Get the maximum current difference
curr = max(curr, diff);
// At the center side difference should be less than the characters at the end
if (maxOpes < diff) {
return -1;
}
maxOpes = diff;
p++;
q--;
}
return curr;
}
int main() {
string nums = "22434";
int len = nums.length();
cout << "The number of minimum operations required to make string palindromic is " << makePalindrome(nums, len);
return 0;
}
输出
The number of minimum operations required to make string palindromic is 2
public class Main {
public static int makePalindrome(String alpha) {
int len = alpha.length();
int q = len - 1;
int p = 0;
int maxOpes = Integer.MAX_VALUE;
int curr = 0;
// Traverse from both ends
while (q > p) {
// It is not possible to make the string palindromic
if (alpha.charAt(q) < alpha.charAt(p)) {
return -1;
}
// Get character difference
int diff = alpha.charAt(q) - alpha.charAt(p);
// Get the maximum current difference
curr = Math.max(curr, diff);
// At the center side difference should be less than the characters at the end
if (maxOpes < diff) {
return -1;
}
maxOpes = diff;
p++;
q--;
}
return curr;
}
public static void main(String[] args) {
String nums = "22434";
int len = nums.length();
System.out.println("The number of minimum operations required to make the string palindromic is " + makePalindrome(nums));
}
}
输出
The number of minimum operations required to make the string palindromic is 2
def make_palindrome(alpha):
q = len(alpha) - 1
p = 0
max_opes = float('inf')
curr = 0
# Traverse from both ends
while q > p:
# It is not possible to make the string palindromic
if alpha[q] < alpha[p]:
return -1
# Get character difference
diff = ord(alpha[q]) - ord(alpha[p])
# Get the maximum current difference
curr = max(curr, diff)
# At the center side difference should be less than the characters at the end
if max_opes < diff:
return -1
max_opes = diff
p += 1
q -= 1
return curr
nums = "22434"
print(f"The number of minimum operations required to make the string palindromic is {make_palindrome(nums)}")
输出
The number of minimum operations required to make the string palindromic is 2
时间复杂度 − O(N),用于遍历字符串。
空间复杂度 − O(1),因为我们不使用任何额外的空间。
在解决方案中,我们检查从开头到中心的差异,如果任何中心侧字符具有更高的差异,则返回-1。程序员可以尝试从中心遍历字符串,并检查起始侧的较高差异。
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP