最小跳跃次数问题
在这个问题中,给定一个正整数列表。每个整数表示可以从当前元素进行的最大步数。从第一个元素开始,我们必须找出到达列表末尾项的最少跳跃次数。
对于动态规划方法,定义一个 jumps 数组来存储所需的最小跳跃次数。比如对于 jumps[i] 的值,它表示从第 0 个索引到第 i 个索引需要的最小跳跃次数。
输入和输出
Input:
A list of integers. {1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9}
Output:
The minimum number of jumps to reach the end location. It is 3.
Start from value 1, go to 3. then jumps 3 values and reach 8. then jump 8 values and reach the last element.算法
minPossibleJump(list, n)
输入:数字数组、数组中的数字个数。
输出:到达末尾所需的最小跳跃次数。
Begin define an array named jump of size n if n = 0 or list[0] = 0, then return ∞ jump[0] := 0 for i := 1 to n, do jumps[i] := ∞ for j := 0 to i, do if i <= j + list[j] and jump[j] ≠ ∞, then jump[i] := minimum of jump[i] and (jump[j] + 1) break the loop done done return jump[n-1] End
示例
#include<iostream>
using namespace std;
int min(int x, int y) {
return (x < y)? x: y;
}
int minPossibleJump(int list[], int n) {
int *jumps = new int[n]; // dynamically create jumps array to store steps
if (n == 0 || list[0] == 0)
return INT_MAX;
jumps[0] = 0;
for (int i = 1; i < n; i++) {
jumps[i] = INT_MAX; //initially set jumps as infinity
for (int j = 0; j < i; j++) {
if (i <= j + list[j] && jumps[j] != INT_MAX) {
jumps[i] = min(jumps[i], jumps[j] + 1);
break;
}
}
}
return jumps[n-1];
}
int main() {
int list[] = {1, 3, 5, 8, 9, 2, 6, 7, 6, 8, 9};
int size = 11;
cout << "Minimum number of jumps to reach end is: "<< minPossibleJump(list,size);
return 0;
}输出
Minimum number of jumps to reach end is: 3
广告
数据结构
网络
关系型数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
JavaScript
PHP