C++ 中前 N 个阶乘的乘积
给定一个数 N,任务是求出前 N 个阶乘积,模 1000000007。阶乘是指小于或等于该数的所有数的乘积,用 !(感叹号)表示,例如 - 4! = 4x3x2x1 = 24。
因此,我们必须找出 n 个阶乘的乘积,并模以 1000000007。
约束
1 ≤ N ≤ 1e6.
输入
n = 9
输出
27
说明
1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! Mod (1e9 + 7) = 27
输入
n = 3
输出
12
说明
1! * 2! * 3! mod (1e9 +7) = 12
下面使用的解决问题的思路如下
从 i = 1 递归求阶乘直到 n,并对所有阶乘求乘积
对所有阶乘的乘积求模 1e9 +7
返回结果。
算法
In Fucntion long long int mulmod(long long int x, long long int y, long long int mod) Step 1→ Declare and Initialize result as 0 Step 2→ Set x as x % mod Step 3→ While y > 0 If y % 2 == 1 then, Set result as (result + x) % mod Set x as (x * 2) % mod Set y as y/ 2 Step 4→ return (result % mod) In Function long long int nfactprod(long long int num) Step 1→ Declare and Initialize product with 1 and fact with 1 Step 2→ Declare and Initialize MOD as (1e9 + 7) Step 3→ For i = 1 and i <= num and i++ Set fact as (call function mulmod(fact, i, MOD)) Set product as (call function mulmod(product, fact, MOD)) If product == 0 then, Return 0 Step 4→ Return product In Function int main() Step 1→ Declare and Initialize num = 3 Step 2→ Print the result by calling (nfactprod(num)) Stop
举例
#include <stdio.h> long long int mulmod(long long int x, long long int y, long long int mod){ long long int result = 0; x = x % mod; while (y > 0) { // add x where y is odd. if (y % 2 == 1) result = (result + x) % mod; // Multiply x with 2 x = (x * 2) % mod; // Divide y by 2 y /= 2; } return result % mod; } long long int nfactprod(long long int num){ // Initialize product and fact with 1 long long int product = 1, fact = 1; long long int MOD = 1e9 + 7; for (int i = 1; i <= num; i++) { // to find factorial for every iteration fact = mulmod(fact, i, MOD); // product of first i factorials product = mulmod(product, fact, MOD); //when product divisible by MOD return 0 if (product == 0) return 0; } return product; } int main(){ long long int num = 3; printf("%lld \n", (nfactprod(num))); return 0; }
输出
如果运行以上代码,它将生成以下输出 -
12
广告