Python——如何按分钟对 Pandas DataFrame 进行分组?
我们将使用 groupby() 对 Pandas DataFrame 进行分组。使用 grouper 函数选择要使用的列。我们按分钟分组,并计算下面的汽车销售记录示例中 Registration Price 的和,其中分钟为间隔。
首先,假设下面是包含三列的 Pandas DataFrame。我们设置了 Date_of_Purchase,带有时间戳,同时包括日期和时间——
dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [ pd.Timestamp("2021-07-28 00:10:00"), pd.Timestamp("2021-07-28 00:12:00"), pd.Timestamp("2021-07-28 00:15:00"), pd.Timestamp("2021-07-28 00:16:00"), pd.Timestamp("2021-07-28 00:17:00"), pd.Timestamp("2021-07-28 00:20:00"), pd.Timestamp("2021-07-28 00:35:00"), pd.Timestamp("2021-07-28 00:42:00"), pd.Timestamp("2021-07-28 00:57:00"), ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } )
接下来,在 groupby 函数中使用 Grouper 选择 Date_of_Purchase 列。频率设置为 7min,即间隔 7 分钟分组——
print"\nGroup Dataframe by 7 minutes...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='7min')).sum()
示例
以下是代码——
import pandas as pd # dataframe with one of the columns as Date_of_Purchase dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [ pd.Timestamp("2021-07-28 00:10:00"), pd.Timestamp("2021-07-28 00:12:00"), pd.Timestamp("2021-07-28 00:15:00"), pd.Timestamp("2021-07-28 00:16:00"), pd.Timestamp("2021-07-28 00:17:00"), pd.Timestamp("2021-07-28 00:20:00"), pd.Timestamp("2021-07-28 00:35:00"), pd.Timestamp("2021-07-28 00:42:00"), pd.Timestamp("2021-07-28 00:57:00"), ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } ) print"DataFrame...\n",dataFrame # Grouper to select Date_of_Purchase column within groupby function print"\nGroup Dataframe by 7 minutes...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='7min')).sum()
输出
这将生成以下输出——
DataFrame... Car Date_of_Purchase Reg_Price 0 Audi 2021-07-28 00:10:00 1000 1 Lexus 2021-07-28 00:12:00 1400 2 Tesla 2021-07-28 00:15:00 1100 3 Mercedes 2021-07-28 00:16:00 900 4 BMW 2021-07-28 00:17:00 1700 5 Toyota 2021-07-28 00:20:00 1800 6 Nissan 2021-07-28 00:35:00 1300 7 Bentley 2021-07-28 00:42:00 1150 8 Mustang 2021-07-28 00:57:00 1350 Group Dataframe by 7 minutes... Reg_Price Date_of_Purchase 2021-07-28 00:07:00 2400.0 2021-07-28 00:14:00 5500.0 2021-07-28 00:21:00 NaN 2021-07-28 00:28:00 NaN 2021-07-28 00:35:00 1300.0 2021-07-28 00:42:00 1150.0 2021-07-28 00:49:00 NaN 2021-07-28 00:56:00 1350.0
广告