Python Pandas – 使用 notnull() 检查空值
notnull() 方法返回一个布尔值,即如果 DataFrame 具有空值,则返回 False,否则返回 True。
假设以下 CSV 文件包含一些 NaN(即空值)−

首先,我们先读取 CSV 文件 −
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv")检查非空值 −
res = dataFrame.notnull()
现在,在显示 DataFrame 时,CSV 数据将以 True 和 False(即布尔值)的形式显示,因为 notnull() 返回布尔值。对于空值,将显示 False。对于非空值,将显示 True。
示例
以下是完整代码 −
import pandas as pd
# reading csv file
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv")
print("DataFrame...\n",dataFrame)
# count the rows and columns in a DataFrame
print("\nNumber of rows and column in our DataFrame = ",dataFrame.shape)
res = dataFrame.notnull()
print("\nDataFrame displaying False for Null (NaN) value = \n",res)
dataFrame = dataFrame.dropna()
print("\nDataFrame after removing null values...\n",dataFrame)
print("\n(Updated) Number of rows and column in our DataFrame = ",dataFrame.shape)输出
以下为输出结果 −
DataFrame... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai 110.0 2 RollsRoyce Pune NaN 3 BMW Delhi 200.0 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh NaN 6 Audi Mumbai NaN 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 Number of rows and column in our DataFrame = (9, 3) DataFrame displaying False for Null values = Car Place UnitsSold 0 True True True 1 True True True 2 True True False 3 True True True 4 True True True 5 True True False 6 True True False 7 True True True 8 True True True DataFrame after removing null values... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai 110.0 3 BMW Delhi 200.0 4 Mercedes Hyderabad 80.0 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 (Updated)Number of rows and column in our DataFrame = (6, 3)
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP