Python - 从 DataFrame 中删除缺失(NaN)值
要移除缺失值(即 NaN 值),请使用 dropna() 方法。首先,让我们导入必要的库 −
import pandas as pd
读取 CSV 并创建一个 DataFrame −
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv")
使用 dropna() 删除缺失值。在使用 dropna() 后,NaN 将显示为缺失值 −
dataFrame.dropna()
示例
以下是完整代码
import pandas as pd
# reading csv file
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv")
print("DataFrame with some NaN (missing) values...\n",dataFrame)
# count the rows and columns in a DataFrame
print("\nNumber of rows and column in our DataFrame = ",dataFrame.shape)
# drop the missing values
print("\nDataFrame after removing NaN values...\n",dataFrame.dropna())输出
它将显示以下输出 −
DataFrame with some NaN (missing) values... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai NaN 2 RollsRoyce Pune 100.0 3 BMW Delhi NaN 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh 80.0 6 Audi Mumbai NaN 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 Number of rows and colums in our DataFrame = (9, 3) DataFrame after removing NaN values ... Car Place UnitsSold 0 Audi Bangalore 80.0 2 RollsRoyce Pune 100.0 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh 80.0 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP