编写一个Python程序,在一个给定的数据框中找到缺失值最少的列。
假设你有一个数据框,缺失值最少的列是:
DataFrame is: Id Salary Age 0 1.0 20000.0 22.0 1 2.0 NaN 23.0 2 3.0 50000.0 NaN 3 NaN 40000.0 25.0 4 5.0 80000.0 NaN 5 6.0 NaN 25.0 6 7.0 350000.0 26.0 7 8.0 55000.0 27.0 8 9.0 60000.0 NaN 9 10.0 70000.0 24.0 lowest missing value column is: Id
为了解决这个问题,我们将遵循以下步骤:
解决方案
定义一个包含三列Id、Salary和Age的数据框。
在lambda函数内设置df.apply()来检查所有行的空值之和。
df = df.apply(lambda x: x.isnull().sum(),axis=0)
最后,使用df.idxmin()打印数据框df中的最小值。
df.idxmin()
示例
让我们看看下面的代码,以便更好地理解:
import pandas as pd import numpy as np df = pd.DataFrame({'Id':[1,2,3,np.nan,5,6,7,8,9,10], 'Salary':[20000,np.nan,50000,40000,80000,np.nan,350000,55000,60000,70000], 'Age': [22,23,np.nan,25,np.nan,25,26,27,np.nan,24] }) print("DataFrame is:\n",df) df = df.apply(lambda x: x.isnull().sum(),axis=0) print("lowest missing value column is:",df.idxmin())
输出
DataFrame is: Id Salary Age 0 1.0 20000.0 22.0 1 2.0 NaN 23.0 2 3.0 50000.0 NaN 3 NaN 40000.0 25.0 4 5.0 80000.0 NaN 5 6.0 NaN 25.0 6 7.0 350000.0 26.0 7 8.0 55000.0 27.0 8 9.0 60000.0 NaN 9 10.0 70000.0 24.0 lowest missing value column is: Id
广告