Python - 选择具有特定数据类型的列


要选择具有特定数据类型的列,请使用select_dtypes() 方法和 include 参数。首先,创建一个包含 2 列的 DataFrame −

dataFrame = pd.DataFrame(
   {
      "Student": ['Jack', 'Robin', 'Ted', 'Marc', 'Scarlett', 'Kat', 'John'],"Roll Number": [ 5, 10, 3, 8, 2, 9, 6]
   }
)

现在,选择具有各自特定数据类型的 2 列 −

column1 = dataFrame.select_dtypes(include=['object']).columns
column2 = dataFrame.select_dtypes(include=['int64']).columns

示例

以下是代码 −

import pandas as pd

# Create DataFrame
dataFrame = pd.DataFrame(
   {
      "Student": ['Jack', 'Robin', 'Ted', 'Marc', 'Scarlett', 'Kat', 'John'],"Roll Number": [ 5, 10, 3, 8, 2, 9, 6]
   }
)

print"DataFrame ...\n",dataFrame

print"\nInfo of the entire dataframe:\n"

# get the description
print(dataFrame.info())

# select columns with specific datatype
column1 = dataFrame.select_dtypes(include=['object']).columns
column2 = dataFrame.select_dtypes(include=['int64']).columns

print"Column 1 with object type = ",column1
print"Column 2 with int64 type = ",column2

输出

这将产生以下输出 −

DataFrame ...
   Roll Number   Student
0            5      Jack
1           10     Robin
2            3       Ted
3            8      Marc
4            2  Scarlett
5            9       Kat
6            6      John

Info of the entire dataframe:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6
Data columns (total 2 columns):
Roll Number    7  non-null int64
Student        7  non-null object
dtypes: int64(1), object(1)
memory usage: 184.0+ bytes
None
Column 1 with object type = Index([u'Student'], dtype='object')
Column 2 with int64 type = Index([u'Roll Number'], dtype='object')

更新于: 21-9-2021

148 次浏览

开启你的 职业生涯

通过完成课程获得认证

开始
广告
© . All rights reserved.