Python——使用Word2Vec进行词嵌入


词嵌入是一种语言模型技术,用于将单词映射到实数向量。它使用多个维度在向量空间中表示单词或短语。可以使用神经网络、共现矩阵、概率模型等各种方法生成词嵌入。

Word2Vec 由用于生成单词嵌入的模型组成。这些模型是浅层两层神经网络,具有一个输入层、一个隐藏层和一个输出层。

示例

# importing all necessary modules
from nltk.tokenize import sent_tokenize, word_tokenize
import warnings
warnings.filterwarnings(action = 'ignore')
import gensim
from gensim.models import Word2Vec  
#  Reads ‘alice.txt’ file
sample = open("C:\Users\Vishesh\Desktop\alice.txt", "r")
s = sample.read()  
# Replaces escape character with space
f = s.replace("\n", " ")
data = []  
# iterate through each sentence in the file
for i in sent_tokenize(f):
   temp = []    
   # tokenize the sentence into words
   for j in word_tokenize(i):
      temp.append(j.lower())  
   data.append(temp)  
# Create CBOW model
model1 = gensim.models.Word2Vec(data, min_count = 1,  size = 100, window = 5)  
# Print results
print("Cosine similarity between 'alice' " + "and 'wonderland' - CBOW : ", model1.similarity('alice', 'wonderland'))    
print("Cosine similarity between 'alice' " + "and 'machines' - CBOW : ", model1.similarity('alice', 'machines'))  
# Create Skip Gram model
model2 = gensim.models.Word2Vec(data, min_count = 1, size = 100, window =5, sg = 1)
# Print results
print("Cosine similarity between 'alice' " + "and 'wonderland' - Skip Gram : ", model2.similarity('alice', 'wonderland'))      
print("Cosine similarity between 'alice' " + "and 'machines' - Skip Gram : ", model2.similarity('alice', 'machines'))

更新于:08-8-2020

515次浏览

开启你的职业生涯

完成课程即可获得认证

开始
广告