有向图的连通性
要检查图的连通性,我们将尝试使用任何遍历算法遍历所有节点。完成遍历后,如果有任何节点未访问,则表示该图不是连通的。
对于有向图,我们将从所有节点开始遍历以检查连通性。有时一个边只有一个向外边而没有向内边,因此从任何其他起始节点都无法访问该节点。
在这种情况下,遍历算法是递归 DFS 遍历。
输入和输出
Input: Adjacency matrix of a graph 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 Output: The Graph is connected.
算法
traverse(u, visited)
输入: 开始节点 u 和被标记为已访问节点的已访问节点。
输出 − 遍历所有连接的顶点。
Begin mark u as visited for all vertex v, if it is adjacent with u, do if v is not visited, then traverse(v, visited) done End
isConnected(graph)
输入: 图。
输出:如果图是连通的,则返回 True。
Begin define visited array for all vertices u in the graph, do make all nodes unvisited traverse(u, visited) if any unvisited node is still remaining, then return false done return true End
示例
#include<iostream> #define NODE 5 using namespace std; int graph[NODE][NODE] = { {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0} }; void traverse(int u, bool visited[]) { visited[u] = true; //mark v as visited for(int v = 0; v<NODE; v++) { if(graph[u][v]) { if(!visited[v]) traverse(v, visited); } } } bool isConnected() { bool *vis = new bool[NODE]; //for all vertex u as start point, check whether all nodes are visible or not for(int u; u < NODE; u++) { for(int i = 0; i<NODE; i++) vis[i] = false; //initialize as no node is visited traverse(u, vis); for(int i = 0; i<NODE; i++) { if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected return false; } } return true; } int main() { if(isConnected()) cout << "The Graph is connected."; else cout << "The Graph is not connected."; }
输出
The Graph is connected.
广告