C++ 程序,利用 DFS 验证有向图的连通性
为了检查图表的连通性,我们将尝试使用任何遍历算法来遍历所有节点。在遍历完成后,如果有任何未访问的节点,则表明该图表是不连通的。

对于有向图,我们将从所有节点开始遍历以检查连通性。有时一个边可能只有外向边,但没有内向边,因此该节点将从任何其他起始节点开始都是未访问的。
在这种情况下,遍历算法是递归 DFS 遍历。
输入:图表的邻接矩阵
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
输出:图表是连通的。
算法
traverse(u, visited)
输入:起始节点 u 和已访问的节点,用于标记已访问的节点。
输出:遍历所有连接的顶点。
Begin
mark u as visited
for all vertex v, if it is adjacent with u, do
if v is not visited, then
traverse(v, visited)
done
EndisConnected(graph)
输入:图表。
输出:如果图表是连通的,则为 True。
Begin
define visited array
for all vertices u in the graph, do
make all nodes unvisited
traverse(u, visited)
if any unvisited node is still remaining, then
return false
done
return true
End示例代码
#include<iostream>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {{0, 1, 0, 0, 0},
{0, 0, 1, 0, 0},
{0, 0, 0, 1, 1},
{1, 0, 0, 0, 0},
{0, 1, 0, 0, 0}};
void traverse(int u, bool visited[]) {
visited[u] = true; //mark v as visited
for(int v = 0; v<NODE; v++) {
if(graph[u][v]) {
if(!visited[v])
traverse(v, visited);
}
}
}
bool isConnected() {
bool *vis = new bool[NODE];
//for all vertex u as start point, check whether all nodes are visible or not
for(int u; u < NODE; u++) {
for(int i = 0; i<NODE; i++)
vis[i] = false; //initialize as no node is visited
traverse(u, vis);
for(int i = 0; i<NODE; i++) {
if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
return false;
}
}
return true;
}
int main() {
if(isConnected())
cout << "The Graph is connected.";
else
cout << "The Graph is not connected.";
}输出
The Graph is connected.
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP