有向图中的欧拉回路


欧拉路径是一条路径,我们可以通过它精确地访问每条边一次。我们可以多次使用相同的顶点。欧拉回路是一种特殊的欧拉路径。当欧拉路径的起始顶点也与该路径的结束顶点相连时,则称为欧拉回路。

要检查图是否为欧拉图,我们必须检查两个条件:

  • 图必须是连通的。
  • 每个顶点的入度和出度必须相同。

输入和输出

Input:
Adjacency matrix of the graph.
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
1 0 0 0 0
0 0 1 0 0

Output:
Euler Circuit Found.

算法

traverse(u, visited)

输入:起始节点 u 和已访问节点,用于标记哪个节点已被访问。

输出:遍历所有连接的顶点。

Begin
   mark u as visited
   for all vertex v, if it is adjacent with u, do
      if v is not visited, then
         traverse(v, visited)
   done
End

isConnected(graph)

输入:图。

输出:如果图是连通的,则返回 True。

Begin
   define visited array
   for all vertices u in the graph, do
      make all nodes unvisited
      traverse(u, visited)
      if any unvisited node is still remaining, then
         return false
   done
   return true
End

isEulerCircuit(Graph)

输入:给定的图。

输出:找到一个欧拉回路时返回 True。

Begin
   if isConnected() is false, then
      return false
   define list for inward and outward edge count for each node

   for all vertex i in the graph, do
      sum := 0
      for all vertex j which are connected with i, do
         inward edges for vertex i increased
         increase sum
      done
      number of outward of vertex i is sum
   done

   if inward list and outward list are same, then
      return true
   otherwise return false
End

示例

#include<iostream>
#include<vector>
#define NODE 5
using namespace std;

int graph[NODE][NODE] = {
   {0, 1, 0, 0, 0},
   {0, 0, 1, 0, 0},
   {0, 0, 0, 1, 1},
   {1, 0, 0, 0, 0},
   {0, 0, 1, 0, 0}
};
               
void traverse(int u, bool visited[]) {
   visited[u] = true;    //mark v as visited

   for(int v = 0; v<NODE; v++) {
      if(graph[u][v]) {
         if(!visited[v])
            traverse(v, visited);
      }
   }
}

bool isConnected() {
   bool *vis = new bool[NODE];
   //for all vertex u as start point, check whether all nodes are visible or not

   for(int u; u < NODE; u++) {
      for(int i = 0; i<NODE; i++)
         vis[i] = false;    //initialize as no node is visited
               
      traverse(u, vis);
         
      for(int i = 0; i<NODE; i++) {
         if(!vis[i])    //if there is a node, not visited by traversal, graph is not connected
            return false;
      }
   }
   return true;
}

bool isEulerCircuit() {
   if(isConnected() == false) {    //when graph is not connected
      return false;
   }

   vector<int> inward(NODE, 0), outward(NODE, 0);
         
   for(int i = 0; i<NODE; i++) {
      int sum = 0;
      for(int j = 0; j<NODE; j++) {
         if(graph[i][j]) {
            inward[j]++;    //increase inward edge for destination vertex
            sum++;    //how many outward edge
         }
      }
      outward[i] = sum;
   }

   if(inward == outward)    //when number inward edges and outward edges for each node is same
      return true;
   return false;
}

int main() {
   if(isEulerCircuit())
      cout << "Euler Circuit Found.";
   else
      cout << "There is no Euler Circuit.";
}

输出

Euler Circuit Found.

更新于: 2020年6月16日

2K+ 浏览量

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告