用 C++ 检查有向图是否联通


为了检查图的连通性,我们将尝试使用任何遍历算法遍历所有节点。遍历完成后,如果仍有未访问的节点,则该图是不连通的。

对于有向图,我们将从所有节点开始遍历以检查连通性。有时一条边可能只有外向边,没有内向边,因此该节点将不会从任何其他起始节点访问。

在这种情况下,遍历算法是递归 DFS 遍历。

输入 - 图的邻接矩阵

01000
00100
00011
10000
01000

输出 - 该图是连通的。

算法

traverse(u, visited)
Input: The start node u and the visited node to mark which node is visited.
Output: Traverse all connected vertices.
Begin
   mark u as visited
   for all vertex v, if it is adjacent with u, do
      if v is not visited, then
         traverse(v, visited)
   done
End
isConnected(graph)
Input: The graph.
Output: True if the graph is connected.
Begin
   define visited array
   for all vertices u in the graph, do
      make all nodes unvisited
      traverse(u, visited)
      if any unvisited node is still remaining, then
         return false
   done
   return true
End

示例

 活动演示

#include<iostream>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {{0, 1, 0, 0, 0},
   {0, 0, 1, 0, 0},
   {0, 0, 0, 1, 1},
   {1, 0, 0, 0, 0},
   {0, 1, 0, 0, 0}
};
void traverse(int u, bool visited[]){
   visited[u] = true; //mark v as visited
   for(int v = 0; v<NODE; v++){
      if(graph[u][v]){
         if(!visited[v])
         traverse(v, visited);
      }
   }
}
bool isConnected(){
   bool *vis = new bool[NODE];
   //for all vertex u as start point, check whether all nodes are visible or not
   for(int u; u < NODE; u++){
      for(int i = 0; i<NODE; i++)
      vis[i] = false; //initialize as no node is visited
      traverse(u, vis);
      for(int i = 0; i<NODE; i++){
         if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
         return false;
      }
   }
   return true;
}
int main(){
   if(isConnected())
   cout << "The Graph is connected.";
   else
   cout << "The Graph is not connected.";
}

输出

The Graph is connected.

更新于: 2019 年 9 月 25 日

1K+ 浏览

开启你的职业生涯

通过完成课程获得认证

开始
广告
© . All rights reserved.