C++程序检查图是否强连通
在有向图中,如果一个组件中的每对顶点之间都存在一条路径,则称这些组件为强连通的。
为了解决该算法,首先使用DFS算法获取每个顶点的完成时间,现在找到转置图的完成时间,然后根据拓扑排序以降序对顶点进行排序。
输入:图的邻接矩阵。
0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 |
输出:以下是给定图中的强连通分量 -
0 1 2 3 4
算法
traverse(graph, start, visited)
输入:将被遍历的图,起始顶点以及已访问节点的标志。
节点。
输出:使用DFS技术遍历每个节点并显示节点。
Begin mark start as visited for all vertices v connected with start, do if v is not visited, then traverse(graph, v, visited) done End
topoSort(u, visited, stack)
输入 - 起始节点,已访问顶点的标志,栈。
输出 - 在排序图时填充栈。
Begin mark u as visited for all node v, connected with u, do if v is not visited, then topoSort(v, visited, stack) done push u into the stack End
getStrongConComponents(graph)
输入 - 给定的图。
输出 - 所有强连通分量。
Begin initially all nodes are unvisited for all vertex i in the graph, do if i is not visited, then topoSort(i, vis, stack) done make all nodes unvisited again transGraph := transpose of given graph while stack is not empty, do pop node from stack and take into v if v is not visited, then traverse(transGraph, v, visited) done End
示例代码
#include <iostream> #include <stack> #define NODE 5 using namespace std; int graph[NODE][NODE]= { {0, 0, 1, 1, 0}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 1}, {0, 0, 0, 0, 0}}; int transGraph[NODE][NODE]; void transpose() { //transpose the graph and store to transGraph for(int i = 0; i<NODE; i++) for(int j = 0; j<NODE; j++) transGraph[i][j] = graph[j][i]; } void traverse(int g[NODE][NODE], int u, bool visited[]) { visited[u] = true; //mark v as visited cout << u << " "; for(int v = 0; v<NODE; v++) { if(g[u][v]) { if(!visited[v]) traverse(g, v, visited); } } } void topoSort(int u, bool visited[], stack<int> &stk) { visited[u] = true; //set as the node v is visited for(int v = 0; v<NODE; v++) { if(graph[u][v]) { //for allvertices v adjacent to u if(!visited[v]) topoSort(v, visited, stk); } } stk.push(u); //push starting vertex into the stack } void getStrongConComponents() { stack<int> stk; bool vis[NODE]; for(int i = 0; i<NODE; i++) vis[i] = false; //initially all nodes are unvisited for(int i = 0; i<NODE; i++) if(!vis[i]) //when node is not visited topoSort(i, vis, stk); for(int i = 0; i<NODE; i++) vis[i] = false; //make all nodes are unvisited for traversal transpose(); //make reversed graph while(!stk.empty()) { //when stack contains element, process in topological order int v = stk.top(); stk.pop(); if(!vis[v]) { traverse(transGraph, v, vis); cout << endl; } } } int main() { cout << "Following are strongly connected components in given graph: "<<endl; getStrongConComponents(); }
Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.
输出
Following are strongly connected components in given graph: 0 1 2 3 4
广告