针对有向图检查其是否是弱连通或强连通的 C++ 程序


可使用 DFS 找出针对给定有向图的弱连通还是强连通。这是一个针对此问题的 C++ 程序。

使用的函数

Begin
   Function fillorder() = fill stack with all the vertices.
   a) Mark the current node as visited and print it
   b) Recur for all the vertices adjacent to this vertex
   c) All vertices reachable from v are processed by now, push v to Stack
End
Begin
   Function DFS() :
   a) Mark the current node as visited and print it
   b) Recur for all the vertices adjacent to this vertex
End

示例

#include <iostream>
#include <list>
#include <stack>
using namespace std;
class G {
   int m;
   list<int> *adj;
   //declaration of functions
   void fillOrder(int n, bool visited[], stack<int> &Stack);
   void DFS(int n, bool visited[]);
   public:
      G(int N); //constructor
      void addEd(int v, int w);
      int print();
      G getTranspose();
};
G::G(int m) {
   this->m = m;
   adj = new list<int> [m];
}
void G::DFS(int n, bool visited[]) {
   visited[n] = true; // Mark the current node as visited and print it
   cout << n << " ";
   list<int>::iterator i;
   //Recur for all the vertices adjacent to this vertex
   for (i = adj[n].begin(); i != adj[n].end(); ++i)
      if (!visited[*i])
         DFS(*i, visited);
}
G G::getTranspose() {
   G g(m);
   for (int n = 0; n< m; n++) {
      list<int>::iterator i;
      for (i = adj[n].begin(); i != adj[n].end(); ++i) {
         g.adj[*i].push_back(n);
      }
   }
   return g;
}
void G::addEd(int v, int w) {
   adj[v].push_back(w); //add w to v's list
}
void G::fillOrder(int v, bool visited[], stack<int> &Stack) {
   visited[v] = true; //Mark the current node as visited and print it
   list<int>::iterator i;
   //Recur for all the vertices adjacent to this vertex
   for (i = adj[v].begin(); i != adj[v].end(); ++i)
      if (!visited[*i])
         fillOrder(*i, visited, Stack);
         Stack.push(v);
}
int G::print() //print the solution {
   stack<int> Stack;
   bool *visited = new bool[m];
   for (int i = 0; i < m; i++)
      visited[i] = false;
   for (int i = 0; i < m; i++)
      if (visited[i] == false)
         fillOrder(i, visited, Stack);
         G graph = getTranspose(); //Create a reversed graph
         for (int i = 0; i < m; i++)//Mark all the vertices as not visited
            visited[i] = false;
            int count = 0;
            //now process all vertices in order defined by Stack
            while (Stack.empty() == false) {
               int v = Stack.top();
               Stack.pop(); //pop vertex from stack
               if (visited[v] == false) {
                  graph.DFS(v, visited);
                  cout << endl;
               }
               count++;
            }
            return count;
}
int main() {
   G g(5);
   g.addEd(2, 1);
   g.addEd(3, 2);
   g.addEd(1, 0);
   g.addEd(0, 3);
   g.addEd(3, 1);
   cout << "Following are strongly connected components in given graph \n";
   if (g.print() > 1) {
      cout << "Graph is weakly connected.";
   } else {
      cout << "Graph is strongly connected.";
   }
   return 0;
}

输出

Following are strongly connected components in given graph
4
0 1 2 3
Graph is weakly connected.

更新于: 30-Jul-2019

216 次查看

Kickstart Your Career

完成课程认证

开始
广告