使用Numpy中的广播计算两个向量相加
要生成模拟广播的对象,请使用 Python Numpy 中的 **numpy.broadcast()** 方法。如果上述规则生成的结果有效,且以下条件之一为真,则称一套数组可广播 −
- 数组的形状完全相同。
- 数组的维度数相同,且每个维度的长度要么是公共长度,要么是 1。
- 维度过少的数组可以将长度为 1 的维度前置到它的形状, ώ 使得上述所述性质为真。
步骤
首先,导入必需的库 −
import numpy as np
创建两个数组 −
arr1 = np.array([[5, 10, 15], [25, 30, 35]]) arr2 = np.array([[7, 14, 21], [28, 35, 56]])
显示数组 −
print("Array 1...
", arr1)
print("
Array 2...
", arr2)获取数组的类型 −
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)获取数组的维度 −
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)获取数组的形状 −
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)要生成模拟广播的对象,请使用 numpy.broadcast () 方法 −
x = np.broadcast(arr1, arr2)
res = np.empty(x.shape)
res.flat = [i+j for (i,j) in x]
print("
Result...
",res)示例
import numpy as np
# Create two arrays
arr1 = np.array([[5, 10, 15], [25, 30, 35]])
arr2 = np.array([[7, 14, 21], [28, 35, 56]])
# Display the arrays
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
# Get the type of the arrays
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
# Get the dimensions of the Arrays
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
# Get the shape of the Arrays
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
# To produce an object that mimics broadcasting, use the numpy.add() method in Python Numpy
x = np.broadcast(arr1, arr2)
res = np.empty(x.shape)
res.flat = [i+j for (i,j) in x]
print("
Result...
",res)输出
Array 1... [[ 5 10 15] [25 30 35]] Array 2... [[ 7 14 21] [28 35 56]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 2 Our Array 1 Shape... (2, 3) Our Array 2 Shape... (2, 3) Result... [[12. 24. 36.] [53. 65. 91.]]
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP