使用Numpy中的广播计算两个向量相加
要生成模拟广播的对象,请使用 Python Numpy 中的 **numpy.broadcast()** 方法。如果上述规则生成的结果有效,且以下条件之一为真,则称一套数组可广播 −
- 数组的形状完全相同。
- 数组的维度数相同,且每个维度的长度要么是公共长度,要么是 1。
- 维度过少的数组可以将长度为 1 的维度前置到它的形状, ώ 使得上述所述性质为真。
步骤
首先,导入必需的库 −
import numpy as np
创建两个数组 −
arr1 = np.array([[5, 10, 15], [25, 30, 35]]) arr2 = np.array([[7, 14, 21], [28, 35, 56]])
显示数组 −
print("Array 1...
", arr1) print("
Array 2...
", arr2)
获取数组的类型 −
print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)
获取数组的维度 −
print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)
获取数组的形状 −
print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)
要生成模拟广播的对象,请使用 numpy.broadcast () 方法 −
x = np.broadcast(arr1, arr2) res = np.empty(x.shape) res.flat = [i+j for (i,j) in x] print("
Result...
",res)
示例
import numpy as np # Create two arrays arr1 = np.array([[5, 10, 15], [25, 30, 35]]) arr2 = np.array([[7, 14, 21], [28, 35, 56]]) # Display the arrays print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To produce an object that mimics broadcasting, use the numpy.add() method in Python Numpy x = np.broadcast(arr1, arr2) res = np.empty(x.shape) res.flat = [i+j for (i,j) in x] print("
Result...
",res)
输出
Array 1... [[ 5 10 15] [25 30 35]] Array 2... [[ 7 14 21] [28 35 56]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 2 Our Array 1 Shape... (2, 3) Our Array 2 Shape... (2, 3) Result... [[12. 24. 36.] [53. 65. 91.]]
广告